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Our interests and methods

the relationship between a binary outcome variable and
covariates X

Y=1 (event)
Y=0 (non-event)
prediction of binary outcome - logistic regression
Pr(Y =1|X) =m =[1+exp(—XB)]?!

estimation of the parameters - maximum likelihood (ML)
n

£(8) = logL(B) = ) [yilogm; + (1 - yplog(1 — )

l

exp(f) = odds ratio should be interpretable



Separation

* under certain conditions:

- small/sparse data set

- rare outcomes/exposures

- covariates with strong correlations/effects
* Example:

complete separation guasi-complete separation

1 0 1 0
15 12
B 0 15 B 15 0

— events and non-events are perfectly separated by the values of a covariate
or a linear combination of covariates

ML parameter estimates:

B = log (M) does not exist!
f12/21
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SUMMARY

The phenomenon of separation or monotone likelihood is observed in the fitting process of a logistic
model if the likelihood converges while at least one parameter estimate diverges to = infinity. Separation
primarily occurs in small samples with several unbalanced and highly predictive risk factors. A procedure
by Firth originally developed to reduce the bias of maximum likelihood estimates is shown to provide an
ideal solution to separation. It produces finite parameter estimates by means of penalized maximum like-
lihood estimation. Corresponding Wald tests and confidence intervals are available but it is shown that
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Abstract

Separation is encountered in regression models with a discrete outcome (such
as logistic regression) where the covariates perfectly predict the outcome. It is
most frequent under the same conditions that lead to small-sample and
sparse-data bias, such as presence of a rare outcome, rare exposures, highly
correlated covariates, or covariates with strong effects. In theory separation
will produce infinite estimates for some coefficients. In practice however
separation may be unnoticed or mishandled because of software limits in
recognizing and handling the problem, and notifying the user. We discuss
causes of separation in logistic regression and describe how common software
packages deal with it. We then describe methods that remove separation,
focusing on the same penalized-likelihood techniques used to address more
general sparse-data problems. These methods improve accuracy, avoid
software problems, and allow interpretation as Bayesian analyses with weakly
informative priors. We discuss likelihood penalties and their relative
advantages and disadvantages, including some that can be implemented easily
with any software package. We illustrate ideas and methods using a case-
control study of contraceptive practices and urinary tract infection.



Penalized likelihood logistic regression

* intended to provide shrinkage of the parameter estimates -
parameter estimates do not diverge

£ () = logL(B) + P(p)

* Firth: P(p) g det(1(8))



Penalized likelihood logistic regression

intended to provide shrinkage of the parameter estimates -
parameter estimates do not diverge

£ () = logL(B) + P(p)

Firth: P(B) = - log det(I(B))
Ridge: P(B) = —A% B?
LASSO: P(B) = -1 1P|

A is usually optimized by cross-validating the deviance



Real data example

The histology of endometrium (HG):
* n=30 grading O—Il -> HG=0

* n=49 grading llI-IV -> HG=1

can be explained by:

* neovasculization (NV):

— present for n=13 and absent for n=66;
* pulsatility index of arteria uterina (Pl):
— median=16 (range: 0—49)
 endometrium height (EH):
— median=1.64 (range: 0.27-3.61)



Estimating the model by ML

Call:
glm(formula = HG ~ NV + PI + EH, family = "binomial”, data = asser)

Deviance Residuals:
M1in 10 Median 30 Max
-1.50137 -0.64108 -0.29432 0.00016 2.72777

Coefficients:
Estimate Std. Error z value Pr(=|z|)
(Intercept) 4.30452 1.63730 2.629 0.008563 ==

NV 18.18556 1715.75089 0.011 0.991543
PI -0.04218 0.04453 -0.952 0.341333
EH -2.90261 0.84555 -3.433 0.000597 ===

Signif. codes: 0 “#**=' 0,001 "*=’ 0.01 =" 0.05 "." 0.1 * " 1



Call:
glm(formula =

Estimating the model by ML

HG ~ NV + PI + EH, family = "binomial”, data

Deviance Residuals:

Min
-1.50137

Coefficients:

-0.64108

10 Median
-0.29432

Estimate Std. Error z value Pr(=|z|)

3Q

0.00016

Max

2.72777

(Intercept) 4.30452 1.63730  2.629 0.008563 **

NV 18.18556 1715.75089  0.011 0.991543

PI -0.04218 0.04433 -0.952 0.341333

EH -2.90261 0.84555 -3.433 0.000597 ===
Signif. codes: 0 "#**=' 0.001 "*=’ 0.01 =" 0.05 “." 0.1

?7?

asser)

1
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Estimating the model by ML

call:
glm(formula = HG ~ NV + PI + EH, family = "binomial”, data = asser)
Deviance Residuals:

M1in 10 Median 30 Max
-1.50137 -0.64108 -0.29432 0.00016 2.72777
Coefficients:

Estimate Std. Error z value Pr(=|z|) HG=1 | HG=0

(Intercept) 4.30452 1.63730 2.629 0.008563 == NV=0 | 17 49
NV 18.18556 1/715. /75089 0.011 0.991543
PI -0.04218 0.04433 -0.952 0.341333 NV=1 | 13 0
EH -2.90261 0.84555 -3.433 0.000597 #=*=*
Signif. codes: 0O *#*==7 0.001 “=*=° 0.01 **=" 0.05 “." 0.1 * " 1

Number of Fisher Scoring iterations: 17

> model.ml$converged

[1] TRUE

-> only likelihood ,converged’, not the parameters!
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Estimating the model by Firth

logistf(formula = HG ~ NV + PI + EH, data = asser, family

Model fitted by Penalized ML

Confidence intervals and p-values by Profile Likelihood

coef se(coef) lower 0.95

(Intercept) 3.77455968 1.48869166 1.0825417
NV 2.92927334 1.55076372 0.609/7274
PI -0.03475176 0.03957815 -0.1244587
EH -2.60416391 0./77601764 -4.3651832

upper 0.95
7.20928050
7.85463171
0.04045547

-1.23272106

= "hbinomial")

Chisg p
B.1980136 4.193628e-03
6./7984572 9.123668e-03
0.7468285 3.8/74822e-01

17.7593175 2.506867e-05

Likelihood ratio test=43.65582 on 3 df, p=1.78586e-09, n=79

wald test = 17.47967 on 3 df, p = 0.0005630434
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Estimating the model using (tuned) ridge
regression

= model.cv<-cv.glmnet(y=asser$HG, x=x, family="binomial", nfolds=nrow(asser), alpha=0)
Warning message:

Option grouped=FALSE enforced in cv.glmnet, since < 3 observations per fold

= coef(model.cv, s="Tlambda.min")

4 x 1 sparse Matrix of class "dgCMatrix"

1
(Intercept) 2.47125685
NV 2.47998054
PI -0.01756067
EH -1.91025366
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Estimating the model using (tuned) ridge
regression

> plot(model.cv)

100
|

90

Binomial deviance
80
|

70

log{Lambda)

-> converged, but at lowest lambda
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Extending the range of 4

> plot(model.cv2)
> coef(model.cv2, s="lambda.min")

4 x 1 sparse Matrix of class "dgCMatrix"

1
(Intercept) 2.80892893
NV 2.73293270
PI -0.02126937
EH -2.10097872

,real convergence’!

Is it a solution to separation?

Binomial deviance

80 90 100

70

log(Lambda)
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Univariable model for ,E’NV

[ D; = _Z{Ynewlogﬁ + (1 — Ypew)log(1 — ﬁ')} ]

105
|

100
|

95

90

Binomial deviance

A =[0.029,275.276]
sA=opt.
vy P =3.39

85

80

log(Lambda)
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Univariable model for ,E’NV
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[ D; = _Z{Ynewlogﬁ + (1 — Yyen)log(1 — ﬁ')}
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Intermediate conclusion

 For the multivariable model,
ridge regression converged

* For the univariable model,
ridge regression did not converge

 Why does this happen?



Univariable model with NV only

Binomial deviance

110

100

90

80

70

60

NV

log(Lambda)
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Cross-validating predicted probabilities

Maximum likelihood = tuned (lambda=0)

08 1.0
|

08

CV predicted probability
0.4

0.2

0.0
|

HG
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Bivariable model: NV+PI

[ D; = _Z{Ynewlogﬁ + (1 — Yyen)log(1 — ﬁ')} }

Binomial deviance

NV+P|

Lia

mbda=0.007

NV

pA=opt.
D= 4.64

log(Lambda)
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Cross-validating predicted probabilities

Maximum likelihood (lambda=0)

1.0
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CV predicted probability

0.2
|

0.0
|

HG

23



Cross-validating predicted probabilities

Maximum likelihood (lambda=0)
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= -0

[ D; = _Z{Ynewlofz{jrif + (1 — Yyew)log(1 — ﬁ)} ]
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Cross-validating predicted probabilities

Tuned ridge regression

1.0

08

0.6
|

CV predicted probability
0.4

0.0

HG
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Binomial deviance

110

100

90
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70

60

Bivariable model: NV + EH

Lambda=0.009

NV
sA=opt. _
Byy Fr = 3.26
NV+EH _...--"'
7 log(Lambda)
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Cross-validating predicted probabilities

Maximum likelihood (lambda=0)
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Cross-validating predicted probabilities

Tuned ridge regression
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Multivariable model: NV+EH+PI

Binomial deviance
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Binomial deviance

110
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Adding 10 noise predictors

NV+P|

L

Larhbda=0.007, |

L

ambda=0.009

ambda=0.022

NV

NV+EH+PI

NV+EH

log(Lambda)
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Conclusions

Trouble comes with optimizing A
Pre-specifying the value of A always yields convergence

,Adding noise -> convergence’:

If you have a perfect predictor,

and you add noise to it,

tuned ridge regression will shrink it

Adding covariates changes A (and B)
Unless there is a lot of noise, the optimized A is arbitrary



Further work

For 2x2 table with separation, we have proven that
DA=O,CV < D).=OO,CV

with strict inequality in all real examples.
Still to prove that this holds for any 4 > 0.

What are the empirical properties of the obtained solution?
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