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Our interests and methods 

• the relationship between a binary outcome variable and 
covariates X 

   Y=1 (event) 

   Y=0 (non-event) 

• prediction of binary outcome → logistic regression 
Pr(𝑌 = 1|𝑋) = 𝜋 = 1 + exp(−𝑋𝛽) −1 

• estimation of the parameters → maximum likelihood (ML) 

ℓ(𝛽) = log𝐿(𝛽) =  𝑦𝑖log𝜋𝑖 + (1 − 𝑦𝑖)log(1 − 𝜋𝑖)

𝑛

𝑖

 

• exp(𝛽) = odds ratio should be interpretable  
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Separation 

• under certain conditions: 

- small/sparse data set  

- rare outcomes/exposures  

- covariates with strong correlations/effects  

• Example: 

      complete separation                                 quasi-complete separation 

 

 

 

 

→ events and non-events are perfectly separated by the values of a covariate 
or a linear combination of covariates  

ML parameter estimates: 

    𝛽 = log
𝑓11𝑓22

𝑓12𝑓21
                                                       does not exist!  

1 0 

A 15 0 

B 0 15 

1 0 

A 12 3 

B 15 0 
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A Solution 
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A Solution 
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A Solution 
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Penalized likelihood logistic regression 

• intended to provide shrinkage of the parameter estimates → 
parameter estimates do not diverge  

 
ℓ𝑃(𝛽) = log𝐿(𝛽) + 𝑃(𝛽) 

 

• Firth:     𝑃 𝛽 =
1

2
log det(𝐼 𝛽 ) 
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Penalized likelihood logistic regression 

• intended to provide shrinkage of the parameter estimates → 
parameter estimates do not diverge  

 
ℓ𝑃(𝛽) = log𝐿(𝛽) + 𝑃(𝛽) 

 

• Firth:     𝑃 𝛽 =
1

2
log det(𝐼 𝛽 ) 

 

• Ridge:     𝑃(𝛽) = −𝜆  𝛽2 

• LASSO:     𝑃(𝛽) = −𝜆  |𝛽| 

 

• 𝜆 is usually optimized by cross-validating the deviance 
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Real data example 

The histology of endometrium (HG):  

• n=30 grading 0–II -> HG=0 

• n=49 grading III–IV -> HG=1 

can be explained by: 

• neovasculization (NV):  
– present for n=13 and absent for n=66; 

• pulsatility index of arteria uterina (PI):  
– median=16 (range: 0–49) 

• endometrium height (EH):  
– median=1.64 (range: 0.27–3.61) 
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Estimating the model by ML 
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Estimating the model by ML 
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?? 



Estimating the model by ML 
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?? 

HG=1 HG=0 

NV=0 17 49 

NV=1 13 0 

-> only likelihood ‚converged‘, not the parameters! 



Estimating the model by Firth 
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Estimating the model using (tuned) ridge 
regression 
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Estimating the model using (tuned) ridge 
regression 

15 

-> converged, but at lowest lambda 



Extending the range of 𝜆 

16 

‚real convergence‘! 
 
Is it a solution to separation? 
 
 



Univariable model for 𝛽 𝑁𝑉 
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𝜆 = [0.029, 275.276] 

𝛽 𝑁𝑉
𝜆=𝑜𝑝𝑡.

= 3.39 



Univariable model for 𝛽 𝑁𝑉 
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𝜆 = (1.000𝑒– 8, 300) 

𝛽 𝑁𝑉
𝜆=𝑜𝑝𝑡.

= 10.39 



Intermediate conclusion 

• For the multivariable model,  
ridge regression converged 

 

• For the univariable model,  
ridge regression did not converge 

 

• Why does this happen? 
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Univariable model with NV only 
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Cross-validating predicted probabilities 
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Bivariable model: NV+PI 

22 

𝛽 𝑁𝑉
𝜆=𝑜𝑝𝑡.

= 4.64 



Cross-validating predicted probabilities 
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Cross-validating predicted probabilities 
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Impact of misclassified subjects 



Cross-validating predicted probabilities 
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Bivariable model: NV + EH 
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𝛽 𝑁𝑉
𝜆=𝑜𝑝𝑡.

= 3.26 



Cross-validating predicted probabilities 
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Cross-validating predicted probabilities 
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Multivariable model: NV+EH+PI 
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𝛽 𝑁𝑉
𝜆=𝑜𝑝𝑡.

= 2.73 



Adding 10 noise predictors 
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𝛽 𝑁𝑉
𝜆=𝑜𝑝𝑡.

= 2.40 



Conclusions 

• Trouble comes with optimizing 𝜆 

 

• Pre-specifying the value of 𝜆 always yields convergence 

 

• ‚Adding noise -> convergence‘: 
If you have a perfect predictor,  
and you add noise to it, 
tuned ridge regression will shrink it 
and it doesn‘t look so perfect anymore. 

• Adding covariates changes 𝜆 (and 𝛽 …)  

• Unless there is a lot of noise, the optimized 𝜆 is arbitrary 
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Further work 

• For 2x2 table with separation, we have proven that  
𝐷𝜆=0,𝐶𝑉 ≤ 𝐷𝜆=∞,𝐶𝑉, 
with strict inequality in all real examples. 

• Still to prove that this holds for any 𝜆 > 0. 

 

• What are the empirical properties of the obtained solution? 
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