Penalized logistic regression with rare events: preliminary results

Lara Lusa, Rok Blagus, Angelika Geroldinger and Georg Heinze

Institute for Biostatistics and Medical Informatics, University of Ljubljana CeMSIIS, Medical University of Vienna

29th of September 2015

• We are interested in estimating the probability that a rare event will occur, given the characteristics of a subject: $\pi_i = P(Y_i = 1|X_i)$.

- We are interested in estimating the probability that a rare event will occur, given the characteristics of a subject: $\pi_i = P(Y_i = 1|X_i)$.
- The π_i will be the basis for prediction.

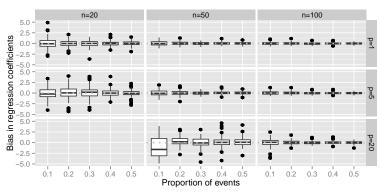
- We are interested in estimating the probability that a rare event will occur, given the characteristics of a subject: $\pi_i = P(Y_i = 1|X_i)$.
- The π_i will be the basis for prediction.
- Logistic regression can be used if the number of considered covariates (p) is reasonably small compared to the number of subjects (n).
 - We assume: $\log \frac{\pi_i}{1-\pi_i} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p$
 - Maximum likelihood method is used to obtain the estimates for the intercept $(\hat{\beta}_0)$ and the regression coefficients $(\hat{\beta})$.
- $\hat{\pi}_i = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p}}$ can be used to estimate a class membership for each of the samples

- We are interested in estimating the probability that a rare event will occur, given the characteristics of a subject: $\pi_i = P(Y_i = 1|X_i)$.
- The π_i will be the basis for prediction.
- Logistic regression can be used if the number of considered covariates (p) is reasonably small compared to the number of subjects (n).
 - We assume: $\log \frac{\pi_i}{1-\pi_i} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p$
 - Maximum likelihood method is used to obtain the estimates for the intercept $(\hat{\beta}_0)$ and the regression coefficients $(\hat{\beta})$.
- $\hat{\pi}_i = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p}}$ can be used to estimate a class membership for each of the samples
- An event is predicted if $\hat{\pi}_i > \pi$ (marginal event proportion).

- We are interested in estimating the probability that a rare event will occur, given the characteristics of a subject: $\pi_i = P(Y_i = 1|X_i)$.
- The π_i will be the basis for prediction.
- Logistic regression can be used if the number of considered covariates (p) is reasonably small compared to the number of subjects (n).
 - We assume: $\log \frac{\pi_i}{1-\pi_i} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p$
 - Maximum likelihood method is used to obtain the estimates for the intercept $(\hat{\beta}_0)$ and the regression coefficients $(\hat{\beta})$.
- $\hat{\pi_i} = \frac{e^{\hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 + \dots + \hat{\beta_p} x_p}}{1 + e^{\hat{\beta_0} + \hat{\beta_1} x_1 + \hat{\beta_2} x_2 + \dots + \hat{\beta_p} x_p}}$ can be used to estimate a class membership for each of the samples
- An event is predicted if $\hat{\pi}_i > \pi$ (marginal event proportion).
- Simple simulations under the null $(\beta = 0)$ will be used to explore the properties of some models.

Logistic regression and rare events Estimation of the regression coefficients

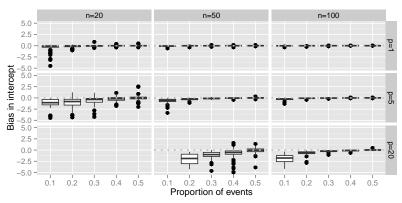
Null case simulation results



 $X \sim N(0,1)$ i.i.d, Y independent from X, $\beta = 0$

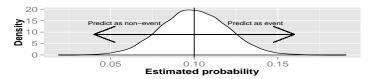
Logistic regression and rare events <u>Estimation of the intercept</u>

Null case simulation results

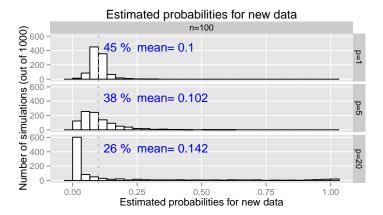


 $X \sim N(0,1)$ i.i.d, Y independent from X, $\beta_0 = logit\pi$

Prediction: Can the estimated probabilities be used to predict events for new data?



Prediction: Can the estimated probabilities be used to predict events for new data?



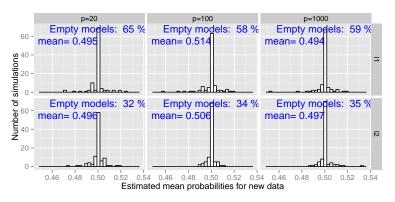
Logistic regression and rare events

- Bad properties when dealing with rare events: biased and imprecise estimates
- Unclear how to use the results from logistic regression for prediction purposes (which threshold?)
- Cannot be used for high-dimensional data (p > n)

Logistic regression and rare events

- Bad properties when dealing with rare events: biased and imprecise estimates
- Unclear how to use the results from logistic regression for prediction purposes (which threshold?)
- Cannot be used for high-dimensional data (p > n)
- Penalized logistic regression (PLR) with lasso (I1) or ridge penalty (I2) can be used with high-dimensional data and might solve some of the problems observed for logistic regression
- Estimation of PLR in R: glmnet or penalized package

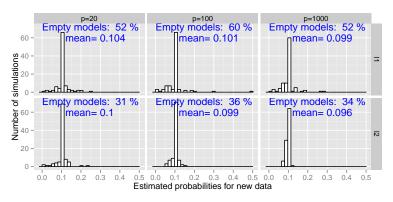
Prediction with penalized models with balanced data $(\pi=0.50)$



Empty models: all regression coefficients set to zero (I1: exactly, I2: approximately as $\hat{\lambda} \to \infty$).

 $X \sim \textit{N}(0,1)$ i.i.d, Y independent from X, $\textit{n}_{\textit{train}} = 100$, $\pi = 0.50$

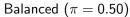
Prediction with penalized models with rare events $(\pi = 0.10)$

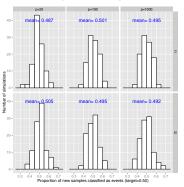


Empty models: all regression coefficients set to zero (I1: exactly, I2: approximately as $\hat{\lambda} \to \infty$).

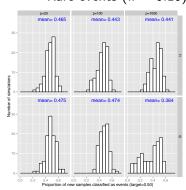
 $X \sim N(0,1)$ i.i.d, Y independent from X, $n_{train} = 100$, $\pi = 0.10$

Proportion of samples classified as events (target=0.50)





Rare events ($\pi = 0.10$)



Weighted penalized models

■ The likelihood is weighted $L(\beta|X) = \prod \pi_i^{y_i w_1} (1 - \pi_i)^{1 - y_i w_0}$

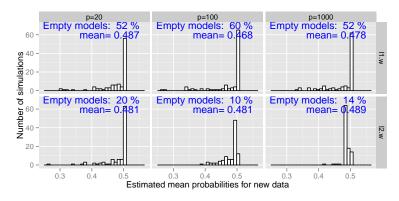
Weighted penalized models

- The likelihood is weighted $L(\beta|X) = \prod_{i} \pi_{i}^{y_{i} w_{1}} (1 \pi_{i})^{1 y_{i} w_{0}}$
- $\sum_{i=1}^{n} y_1 w_1 = \sum_{i=1}^{n} (1 y_i) w_0$ gives the same weights to events and non-events.

Weighted penalized models

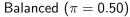
- The likelihood is weighted $L(\beta|X) = \prod_{i} \pi_{i}^{y_{i} w_{1}} (1 \pi_{i})^{1 y_{i} w_{0}}$
- $\sum_{i=1}^{n} y_1 w_1 = \sum_{i=1}^{n} (1 y_i) w_0$ gives the same weights to events and non-events.
- These type of models can be fitted using standard software.

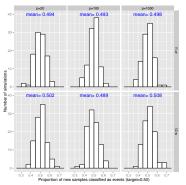
Prediction with weighted penalized models with rare events



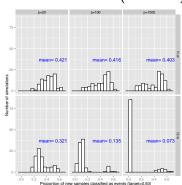
 $X \sim N(0,1)$ i.i.d, Y independent from X, $n_{train} = 100$, $\pi = 0.10$

Weighted PLR: Proportion of samples classified as events (target=0.50)





Rare events ($\pi = 0.10$)



• Are we really interested in binary event prediction?

- Are we really interested in binary event prediction?
- Under the null l1 identifies the empty model in about 60% of the cases, l2 in about 35% of the cases.

- Are we really interested in binary event prediction?
- Under the null l1 identifies the empty model in about 60% of the cases, l2 in about 35% of the cases.
- 11 performs better than 12 also in the alternative case and in the analyses of real high-dimensional data (like gene-expression microarrays).
- The classification based on I1 and I2 is biased towards the majority class (non-events). I1 is less biased than I2 when the number of variables is large.

- Are we really interested in binary event prediction?
- Under the null l1 identifies the empty model in about 60% of the cases, l2 in about 35% of the cases.
- 11 performs better than 12 also in the alternative case and in the analyses of real high-dimensional data (like gene-expression microarrays).
- The classification based on I1 and I2 is biased towards the majority class (non-events). I1 is less biased than I2 when the number of variables is large.
- Weighted PLR does not seem to increase the accuracy in the prediction of the probability of events

- Are we really interested in binary event prediction?
- Under the null l1 identifies the empty model in about 60% of the cases, l2 in about 35% of the cases.
- 11 performs better than 12 also in the alternative case and in the analyses of real high-dimensional data (like gene-expression microarrays).
- The classification based on I1 and I2 is biased towards the majority class (non-events). I1 is less biased than I2 when the number of variables is large.
- Weighted PLR does not seem to increase the accuracy in the prediction of the probability of events and it increases the bias towards non-event classification, especially for I2.