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m We are interested in estimating the probability that a rare
event will occur, given the characteristics of a subject:
i = P(Y; = 11.X)).
The 7; will be the basis for prediction.
Logistic regression can be used if the number of considered
covariates (p) is reasonably small compared to the number of
subjects (n).

m We assume: log 11”7” = o+ Bixi+ Boxa+ ...+ BpXp

m Maximum likelihood method is used to obtain the estimates

for the intercept (fp) and the regression coefficients ().
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An event is predicted if 7; > 7 (marginal event proportion).

Simple simulations under the null (8 = 0) will be used to
explore the properties of some models.



oglistic regression and rare events

Estimation of the regression coefficients

Null case simulation results
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Estimation of the intercept

Null case simulation results
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Estimated probabilities for new data
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m Bad properties when dealing with rare events: biased and
imprecise estimates

m Unclear how to use the results from logistic regression for
prediction purposes (which threshold?)
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m Bad properties when dealing with rare events: biased and
imprecise estimates

m Unclear how to use the results from logistic regression for
prediction purposes (which threshold?)

m Cannot be used for high-dimensional data (p > n)

m Penalized logistic regression (PLR) with lasso (1) or ridge
penalty (12) can be used with high-dimensional data and might
solve some of the problems observed for logistic regression

m Estimation of PLR in R: glmnet or penalized package
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Empty models: all regression coefficients set to zero (I11: exactly,
12: approximately as A — 00).
X ~ N(0,1) i.i.d, Y independent from X, n¢.im = 100, 7 = 0.50
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Proportion of samples classified as events (target=0.50)

Balanced (7 = 0.50) Rare events (m = 0.10)
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Weighted penalized models

m The likelihood is weighted
L(BIX) = TTa)™ (1 — mj) Yo

m >l ywn =3 (1 — yi)wo gives the same weights to
events and non-events.

m These type of models can be fitted using standard software.



Prediction with weighted penalized models with rare events
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Balanced (7 = 0.50) Rare events (m = 0.10)
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Conclusions

m Are we really interested in binary event prediction?

m Under the null 11 identifies the empty model in about 60% of
the cases, 12 in about 35% of the cases.

m |1 performs better than 12 also in the alternative case and in
the analyses of real high-dimensional data (like
gene-expression microarrays).

m The classification based on 11 and 12 is biased towards the
majority class (non-events). I1 is less biased than |12 when the
number of variables is large.

m Weighted PLR does not seem to increase the accuracy in the
prediction of the probability of events and it increases the bias
towards non-event classification, especially for 12.



