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Structured abstract 

Background 

Penalized logistic regression methods are frequently used to develop models to predict a binary 

outcome variable. The discrimination ability of such models can be assessed by the concordance 

(c) statistic and the discrimination slope. Often, data resampling techniques such as 

crossvalidation are then employed to correct for optimism in these model performance criteria. 

Especially with small samples or a rare binary outcome variable, leave-one-out crossvalidation is 

a popular choice to estimate the c statistic. 

Methods 

Using simulations and a real data example, we compared the effect of different resampling 

techniques on the estimation of c statistics and discrimination slopes for five estimators of 

logistic regression models, including the maximum likelihood and four maximum penalized-

likelihood estimators.  

Results  

Our simulation study confirms earlier studies reporting that leave-one-out crossvalidated c 

statistics can be strongly biased towards zero, i.e. yield pessimistic estimates. In addition, our 

study reveals that this bias heavily depends on the choice of estimator. Leave-one-out 

crossvalidation also turned out to provide too pessimistic estimates of the discrimination slope.  

Conclusion 

Leave-one-out crossvalidation results in biased c statistics and discrimination slopes. The 

magnitude of the bias depends on the choice of model estimator. Based on our simulation results, 

we recommend either leave-pair-out crossvalidation, five-fold crossvalidation with repetition or 

the .632+ bootstrap. 

Keywords: bootstrap, concordance statistic, discrimination slope, logistic regression, resampling 

techniques  
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Introduction 

The concordance (c) statistic is a widely used measure to quantify the discrimination ability of 

models for binary outcome variables. The c statistic is defined as the proportion of all pairs of 

observations with contrary outcomes for which the ranking of model predictions is in agreement 

with the true outcome states. Calculating the c statistic for the data on which the model was fitted 

will usually give too optimistic results, especially in the situation of small samples or rare events. 

Attempting to correct for this over-optimism, data resampling techniques such as crossvalidation 

(CV) or the bootstrap are frequently employed. Leave-one-out (LOO) CV has the advantage of 

being applicable even with small samples where other techniques such as ten-fold or five-fold 

CV might run into problems. With LOO CV only the pooling strategy can be used to estimate the 

c statistic: the properly crossvalidated probabilities, each derived from a different model, are 

eventually pooled to calculate a single c statistic. With ten-fold or five-fold CV we usually apply 

an averaging strategy: the crossvalidated probabilities of the observations included in each left-

out fold are used to evaluate the statistics of interest and the final crossvalidated statistics are 

obtained by averaging the results from the folds. Only the averaging approach is a proper CV, as 

it evaluates the statistic of interest in each left-out fold. Whereas LOO crossvalidated statistics are 

known to be nearly unbiased 
1
, it was shown that the improperly LOO crossvalidated c statistics 

can be severely biased towards 0 
2,3

.  

The discrimination slope 
4
 is an increasingly popular measure of predictive accuracy in binary 

models. As its construction parallels that of the c statistics in some aspects, it is unclear if it 

suffers from similar problems with LOO CV. Furthermore, it is unknown whether the magnitude 

of this bias is similar when comparing different penalized-likelihood estimators for logistic 

regression models. Therefore, we studied the bias and variance in c statistics and discrimination 

slopes, combining several logistic regression penalized-likelihood estimators with several 

resampling techniques in a simulation study with a factorial design.  

The remainder of this paper is organized as follows: first, we explain the measures of interest, i.e. 

the resampling techniques to correct for over-optimism and the penalized-likelihood estimators 

under study. A study on prediction of the occurrence of cannulation-site complications in 

minimally invasive cardiac surgery serves as an illustrating example of the differences in results 

likely to be encountered in practice. Subsequently, we provide intuitive explanations of the 

problems with LOO CV using simply structured artificial data. Next, design and results of our 
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simulation study are described. Finally, we discuss the impact of our findings on routine 

statistical analyses.  

Methods  

Measures of discrimination ability  

In the following, we discuss different techniques to calculate optimism-corrected c statistics and 

discrimination slopes for logistic regression with a binary outcome. Without loss of generality we 

denote the two outcome values as ‘event’ and ‘non-event’, and we assume that logistic regression 

models the probability of an event.  

The c statistic is the proportion of pairs of subjects among all possible pairs of subjects with 

contrary outcome values in which the predicted probability is higher in the subject with the event 

than in the subject with the non-event. It is equal to the area under the receiver-operating curve. 

The discrimination slope or mean risk difference is the difference between the mean predicted 

probability for all subjects with events and the mean predicted probability for all subjects with 

non-events. Paralleling the construction of the c statistic, the discrimination slope can also be 

computed as the average pairwise difference in predicted probabilities, thus representing a 

parametric version of the c statistic. It was suggested as a ‘highly recommendable 𝑅2-substitute 

for logistic regression models’ by Tjur 
4
, and recently revisited by Antolini et al. 

5
, who concluded 

that it should not be used for model comparisons as it is not a proper scoring rule 
6
.  

Techniques to correct for over-optimism 

We will now explain some resampling techniques by means of computation of optimism-

corrected estimates of the c statistic. Because of the analogy in construction, methodology 

straightforwardly generalizes to the discrimination slope. We denote by ‘apparent’ those 

measures that are calculated using the same data on which the model was fitted. 

With 𝒇-fold CV the data are split into 𝑓 approximately equally sized parts, often also called the 

‘folds’. A model is estimated on the observations contained in 𝑓-1 parts of the data. Then, using 

this model, predicted probabilities for the observations in the excluded 𝑓-th part are calculated. 

By excluding each fold in turn, one obtains 𝑓 c statistics which are then averaged. To decrease 

variability caused by the random selection of observations for the folds, the whole procedure is 

repeated 𝑟 times, each time splitting the data anew. Finally, a single optimism-corrected c statistic 
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is obtained by averaging over the 𝑓 × 𝑟 statistics. Here we consider 𝑓 = 5 and 𝑟 = 40, i.e. 5-fold 

CV with 40 repetitions, but other choices are possible. As 5-fold CV was always performed 

repeatedly throughout this study, we will often omit the specification “with 40 repetitions” for the 

sake of brevity. We did not consider f-fold CV without replications as its inferiority to replicating 

the CV process has already been shown previously 
3
.  

If setting 𝑓 equal to the sample size 𝑛 (‘leave-one-out CV’), the c statistic cannot be computed 

for the excluded part as it contains only one observation. Instead, a single c statistic is calculated 

from the pooled 𝑛 predicted probabilities.  

Previously the pooling strategy has been used to estimate the c statistic also with f-fold CV (see 
7
 

and the references therein). However, this strategy turned out to introduce a negative bias in the 

estimation of the c statistics, especially for small and imbalanced datasets 
7
, and was not 

considered further in the context of this study.  

Another approach that is independent of random sampling but is based on c statistics calculated 

within each fold is leave-pair-out (LPO) CV, proposed in 
2
 and 

3
. With LPO CV each possible 

pair of observations with contrary outcome values is omitted in turn from the data, the model is 

estimated on the remaining 𝑛 − 2 observations, and using this model predicted probabilities are 

calculated for the two excluded subjects. The LPO crossvalidated c statistic is then the proportion 

of pairs where the predicted probability of the subject with the event is higher than that of the 

subject with the non-event. LPO CV can imply considerable computational burden: If 𝑘 is the 

number of events, (𝑛 − 𝑘)𝑘 models have to be estimated, compared to only 𝑛 models with LOO 

CV. For example, with 50 events among 100 observations, 2500 models must be fitted with LPO 

but only 100 with LOO CV.  

With the simple bootstrap 
8
, the parameter estimates from models fitted on bootstrap resamples 

(sampling 𝑛 observations with replacement from the original data) are used to calculate the c 

statistic for the original data sample. Usually this is repeated, say, 200 times and the estimates are 

averaged. The simple bootstrap is known to perform poorly compared to more refined bootstrap 

techniques 
9
 that we also considered in our study:  

With the enhanced bootstrap 
10

, the bias due to overfitting is explicitly estimated by the 

bootstrap and then subtracted from the apparent c statistic. Specifically, 200 bootstrap resamples 

are drawn from the original data set. On each of the bootstrap resamples a model is developed 
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and c statistics are calculated both for the data of the bootstrap resample and the original data 

using the parameter estimates from the model fitted on the bootstrap resample. An estimate of 

‘optimism’ is obtained by subtracting the average c statistic computed in the original data from 

the average c statistic calculated for the bootstrap resamples. Thus, the optimism is estimated by 

the difference of the average bootstrap-apparent c statistic and the simple bootstrap c statistic. 

The enhanced bootstrap c statistic is then given by the apparent c statistic minus the estimate of 

optimism.  

 The .632+ bootstrap 
11

 is a weighted average of the apparent c statistic and the average ‘out-of-

the-bag’ c statistic calculated in the bootstrap resamples. The ‘out-of-the-bag’ c statistic is 

obtained by fitting the model in a bootstrap resample and applying it to the observations not 

contained in that bootstrap resample. We give the technical details in the Appendix.  

Penalized-likelihood estimation methods  

We investigated the performance of the resampling techniques in combination with the following 

estimators of logistic regression models: 

- maximum likelihood estimation (ML),  

- Firth’s penalized logistic regression (FL) 
12,13

,  

- Firth’s penalized logistic regression with added covariate (FLAC) 
14

,  

- logistic regression penalized by log-F(1,1) priors (LF) 
15

 and  

- logistic ridge regression (RR) 
16

.  

FL amounts to penalization by the Jeffreys prior and was shown to reduce the bias in the 

coefficient estimates compared to ML. Whereas ML gives an average predicted probability equal 

to the empirical event rate, FL generally results in an average predicted probability closer to 0.5 

than the empirical event rate. FLAC is a modification of FL providing mean-unbiased predicted 

probabilities. This is accomplished by interpreting FL as an iterative data augmentation procedure 

and introducing an additional variable that distinguishes the pseudo observations from the 

original ones. Greenland and Mansournia 
15

 suggested to apply log-F(𝑚,𝑚) priors to all 

regression parameters but the intercept. In the following, we use 𝑚 = 1. With RR, the log-

likelihood is penalized by the square of the Euclidean norm of the regression parameters 

multiplied by a tuning parameter. Following Verweij and Van Houwelingen 
17

 we estimated the 

tuning parameter by minimizing the penalized version of the Akaike’s Information Criterion AIC. 
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This selection of model estimators is by no means exhaustive, but is motivated by a study 

comparing penalized logistic regression estimators with respect to both effect estimation and 

prediction 
14

.  

If there is separation in the data, i.e. if a combination of explanatory variables or a single variable 

perfectly predicts the outcome, then ML fails to produce finite regression coefficients and will 

estimate some predicted probabilities to be exactly 0 or 1 
18

. By contrast, FL, FLAC and LF give 

reasonable results in the case of separation. Under separation, RR will only supply finite 

regression coefficients if the tuning parameter is greater than some positive constant. However, 

CV or AIC optimization will often set the tuning parameter to 0 in case of separation, and then 

RR leads to the same problems as maximum likelihood estimation 
18

. 

Problems in resampling techniques associated with small samples 

With small samples one frequently encounters separation in bootstrap resamples or CV subsets 

even if the original data are not separated. This can lead to problems with methods not being 

capable of dealing with separated data such as ML or RR. In this study, we decided to follow the 

simple strategy of restricting the number of iterations in the estimation process and using the 

results from the last iteration even if ML and RR did not converge due to separation. A more 

sophisticated strategy would be to replace the model estimation method for separated data subsets 

by a method that can deal with separation such as Firth’s penalization. Another, less frequent 

problem is the occurrence of bootstrap resamples or CV subsets with linearly dependent 

explanatory variables, e.g. if a binary explanatory variable is restricted to one category and thus is 

collinear with the constant. Such a variable would be omitted in a data analysis, but for the sake 

of simplicity, we just discarded those bootstrap resamples or CV subsets. Finally, the binary 

outcome might be restricted to one category either in the data subset where the model has to be 

fitted or in the data subset where the c statistic or discrimination slope is calculated. In both 

situations, we discarded the affected bootstrap resamples or CV subsets. 

Motivation 

A real data example: arterial closure devices in minimally invasive cardiac surgery  

A retrospective study conducted at the University Hospital Jena compared the use of arterial 

closure devices in minimally invasive cardiac surgery to conventional surgical access with regard 

to the occurrence of cannulation-site complications 
14

. Among the 440 patients included in the 
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study, only 16 (3.6%) encountered complications. The complication rate was 8.9% (8 cases) for 

the conventional surgical access and 2.3% (8 cases) for the arterial closure devices group. The 

discrimination ability of five multivariable models using ML, FL, FLAC, LF and RR, considering 

four adjustment variables in addition to the type of surgical access, was described in terms of c 

statistics assessed by the .632+ bootstrap with 200 repetitions 
14

. These c statistics were similar 

for the different estimators, ranging from 0.698 for LF to 0.705 for FL, see Figure 1. However, if 

LOO CV is used, c statistics are about 0.04 units lower than with the .632+ bootstrap. Moreover, 

with LOO CV, RR seems to be the estimator with the lowest discrimination ability. Its estimated 

c statistic is 0.619, lower than any other method by at least 0.02 units. Of course, we do not know 

which resampling techniques to trust in this real data example. Though, with 
2,3

 in mind, who 

demonstrated that LOO crossvalidated c statistics are prone to downwards bias, it seems sensible 

to discard the LOO crossvalidated c statistics and resort e.g. to the .632+ bootstrap results. The 

next section gives an intuitive explanation for the downward bias in LOO crossvalidated c 

statistics and indicates that the extent of the bias depends on the model estimation method.  

The bias in LOO crossvalidated c statistics  

Figure 2 explains the bias in LOO crossvalidated c statistics by illustrating the estimation process 

on simply structured, artificial data. We generated 20 observations of a normally distributed 

explanatory variable. We arbitrarily declared five observations as ‘events’, the other fifteen as 

‘non-events’, such that the binary outcome variable was independent from the explanatory 

variable by construction (t-test p-value = 0.584). The crucial observation in Figure 2 is that the 

LOO predicted probability was on average lower for events (CV cycles 1-5) than for non-events 

(CV cycles 6-20). This is not surprising: if an event was left out, the data used in the model fitting 

consisted of only 4 events out of 19 observations, compared to 5 events out of 19 observations if 

a non-event was left out. These considerations explain why LOO crossvalidated c statistics (and 

discrimination slopes), which are estimated pooling the crossvalidated predicted probabilities 

derived from different models, are downward biased. Furthermore, Figure 2 illustrates that the 

bias in LOO crossvalidated c statistics usually is more severe for models yielding predicted 

probabilities with lower variance such as ridge regression. This tendency can lead to undesired 

results if one optimizes the tuning parameter in ridge regression using LOO crossvalidated c 

statistics, see Figure S5. Whereas for the null scenario the discrimination ability of ridge 
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regression is independent of the penalization strength, optimization of LOO crossvalidated c 

statistics favors models with less regularization.  

Simulation study 

We evaluated the accuracy of the five resampling techniques introduced above by simulations. In 

brief, we simulated small data sets from a given population model, used various estimators to 

estimate logistic regression models, and each time applied each resampling technique to assess 

model performance. For each simulated data set, the process mimicked the analysis of a real 

study where an external validation set is not available. We then compared the resampling-based 

performance measures with those obtained if the estimated models were validated in the 

population, in our study approximated by an independent validation set consisting of 100,000 

observations. We considered c statistics and discrimination slopes as model performance 

measures. We described the performance of the resampling techniques in terms of mean or 

median difference and root mean squared distance of the resampling-based c statistics and 

discrimination slopes to their respective independently validated (IV) counterparts.  

Set up 

The simulation set up was motivated by the structure of real data sets 
19

. We generated three 

continuous (𝑋1, 𝑋4, 𝑋5) and two categorical explanatory variables (𝑋2, 𝑋3) as follows: first, we 

sampled five standard normal deviates 𝑧𝑖1, … , 𝑧𝑖5 with correlation matrix as specified in the 

Appendix. Next, we applied the transformations described in the Appendix to obtain 𝑥𝑖1, … 𝑥𝑖5. 

Finally, we winsorized each of the continuous variables at the value corresponding to their third 

quartile plus five times the interquartile distance in each simulated data set. Binary outcomes 𝑦𝑖 

were drawn from Bernoulli distributions with the event probability following a logistic model, 

𝑃(𝑌|𝑥𝑖1, … 𝑥𝑖5) = 1/(1 + exp⁡(−𝛽0 − 𝛽1𝑥𝑖1 −⋯− 𝛽5𝑥𝑖5))⁡.  

We considered twelve simulation scenarios in a factorial design combining sample size (𝑛 ∈

⁡{50, 100}), marginal event rate (𝐸(𝑦) ∈ {0.25, 0.5}) and effect size (strong or weak effects of all 

explanatory variables, or null scenarios with no effects). For each scenario we chose the intercept 

𝛽0 such that the desired marginal event rate was approximately achieved. To simulate ‘strong 

effects’ scenarios, we set the model coefficients 𝛽2 to 0.69 and 𝛽3 to -0.345. For the continuous 

variables, we set 𝛽1 to -0.0363, 𝛽4 to 0.0031, and 𝛽5 to -0.0039, corresponding to odds ratios of 2 

or 1/2 when comparing the fifth and the first sextiles of the empirical distribution functions of the 
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corresponding explanatory variables. To simulate ‘weak effects’ we set 𝛽1, … , 𝛽5 to half of those 

values.  Finally, the null scenarios were obtained by setting 𝛽1, … , 𝛽5 to 0. For each scenario we 

created 1,000 data sets.  

Results 

First, we describe the distribution of the c statistic and discrimination slope obtained in the 

independent validation set, which will serve as gold standard in the following. As expected, in 

null scenarios the mean IV c statistics were close to 0.5 irrespective of the model estimator (see 

Table S1). The scenario with 𝑛 = 100, 𝐸(𝑦) = 0.5 and strong effects showed the highest mean 

IV c statistics, ranging between 0.683 for FLAC and 0.684 for RR. The mean IV c statistics were 

similar across different estimators, with a maximum range of 0.006. RR achieved the largest 

mean IV c statistic for each non-null scenario.  

For the mean IV discrimination slope, the differences between the model estimators were more 

substantial, with a range of up to 0.04 units (see Table S2). In non-null scenarios, ML achieved 

the largest median IV discrimination slopes, with values of up to 0.135. Unsurprisingly, RR 

yielded the smallest median IV discrimination slopes, which were at least 20% smaller than by 

ML in all scenarios.   

In approximating IV c statistics, LOO CV performed worst in all scenarios and for all estimation 

methods, both with respect to bias (mean difference) and root mean squared difference (see Table 

1, Figure S1 and Figure S2). The downward bias was most severe for RR and amounted to -0.274 

in the most unfavorable scenario. For this scenario, LOO CV led to far less bias when combined 

with any other estimation method; their bias fell between -0.082 and -0.074, i.e. only about one 

third of the bias with RR. In all but two scenarios, the enhanced and the .632+ bootstrap yielded 

the smallest root mean squared difference for all model estimation methods. Notably, the root 

mean squared difference increased with increasing effect size for the .632+ bootstrap (see Table 

1), whereas it decreased for all other resampling methods as expected. This can be explained by 

the definition of the .632+ bootstrap (see Appendix):  the .632+ bootstrap c statistic is defined to 

be always greater than or equal to the minimum of the apparent c statistic and 0.5. This is also 

reflected in the right-skewed distribution of the .632+ c statistic for null scenarios (see Figure S1 

and Figure S2). The differences between the resampling techniques were less pronounced with 

strong effects, larger sample sizes and balanced event rate.  
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The distribution of the difference between the optimism-corrected and the IV discrimination 

slopes was right-skewed and showed a large number of outliers (see Figure S3 and Figure S4). 

Consequently, conclusions depend on whether the mean or the median difference to the IV 

discrimination slope is considered. For instance, in all but four simulation scenarios the .632+ 

bootstrap gave discrimination slopes with smallest median deviations. On the other hand, it 

performed poorly with respect to the mean difference to the IV discrimination slope, see Table 2. 

For LOO CV the simulation results were more easily interpretable, as LOO CV performed 

consistently poorly in terms of median, mean or root mean squared distance to the IV 

discrimination slope for all model estimators except for RR (see Table 2). Interestingly, the 

enhanced bootstrap gave at least second smallest median differences to the IV discrimination 

slope for all estimators but RR but often performed even worse than LOO CV for RR. Again, the 

differences between the resampling techniques were less pronounced with increasing effect size, 

sample size and more balanced event rate.  

A side remark on the simple bootstrap: resampling may increase the optimism   

We have not included the simple bootstrap in the main presentation of our simulation results 

above due to the known inferiority compared to more refined bootstrap techniques 
9
. Though, 

some results are worth to report. In all simulation scenarios described above, the simple bootstrap 

gave median discrimination slopes even more optimistic than the apparent ones. In other words, 

the simple bootstrap increased the optimism instead of correcting it as we would expect. This 

phenomenon was observed with each model estimator. At first glance, it might appear 

counterintuitive that models fitted on bootstrap resamples discriminate the original outcomes 

better than the model fitted on the original data, but there is a simple explanation: models fitted 

on bootstrap resamples with their repeated observations tend to give more extreme predicted 

probabilities than the model fitted on the original data.  

The c statistics estimated by the simple bootstrap were also severely overoptimistic but on 

average smaller than the apparent c statistics.  

Discussion 

Our simulation study does not only confirm that LOO CV yields pessimistic c statistics 
2,3

 but 

also shows that this bias strongly depends on the choice of model estimator. Thus, LOO 

crossvalidated c statistics should neither be interpreted as absolute values nor compared between 
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different estimators, e.g. in the optimization of tuning parameters in regularized regression. LPO 

CV, which was suggested as an alternative to LOO CV 
2
, indeed performed better both in terms 

of mean difference and root mean squared difference to the IV c statistic. However, the enhanced 

bootstrap and the .632+ bootstrap achieved a smaller root mean squared distance in almost all 

simulation settings. With the .632+ bootstrap c statistics are explicitly restricted to values greater 

than or equal to 0.5 (or the apparent c statistic if smaller). One could apply this winsorization 

with any resampling technique, i.e. report c statistics smaller than 0.5 as 0.5. Whereas the 

practical benefit is questionable, this would have led to smaller root mean squared differences to 

the IV c statistic in simulations. With this in mind, the superiority of the .632+ bootstrap in terms 

of root mean squared difference to the IV c statistic might appear less relevant. Summarizing, we 

found the performance of LPO CV, 5-fold CV, enhanced bootstrap and .632+ bootstrap in the 

estimation of c statistics to be too similar to give definite recommendations, which is in line with 

the results reported by Smith et al. 
3
. Thus, the choice might be made dependent on other criteria 

such as the dependency on data sampling, the extent of computational burden, the level of 

complexity of the approach or the likeliness of encountering problems with model fitting due to 

the sub data structure.  

LOO CV cannot be recommended for the estimation of the discrimination slope either, again 

giving overly pessimistic estimates. Moreover, our simulations revealed unexpected behavior of 

some of the bootstrap techniques. First, the simple bootstrap resulted in estimates even more 

optimistic than the apparent discrimination slopes. Second, the enhanced bootstrap performed 

reasonably well in most situations but for RR gave estimates more pessimistic than LOO CV in 

scenarios with no covariate effects. According to our simulation study we would suggest to use 

either LPO CV, 5-fold CV or the .632+ bootstrap to correct for optimism in discrimination 

slopes.  

Our study illustrates that the performance of resampling techniques can vary considerably 

between model estimators, but does not allow to give definite recommendations which 

resampling technique to prefer in general. Moreover, the results have to be interpreted within the 

limited setting of our simulation study. In particular, our study was restricted to five rather similar 

estimators. Results might be different if considering machine learning methods such as support 

vector machines or if applying a different tuning criterion for ridge regression. However, our 

study suggests that estimates provided by resampling techniques should be treated with caution, 
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no matter whether one is interested in absolute values or a comparison between model estimators. 

Thus, especially in studies with small samples or spurious effects, analysts should not rely on a 

single resampling technique but should test whether different resampling techniques give 

consistent results (see Table 3).  

Table 3. Findings and implications of our study. 

- leave-one-out crossvalidation cannot be used for the estimation of the c statistic and of the 

discrimination slope, as it relies on pooling the results obtained from different models and 

does not provide properly crossvalidated estimates 

- the performance of resampling techniques (e.g. leave-one-out crossvalidation, 5-fold 

crossvalidation) may depend on the choice of model estimator (e.g. ordinary logistic 

regression, logistic ridge regression) 

- resampling techniques suitable for the correction of optimism in one performance 

criterion (e.g. c statistic, discrimination slope) may perform poorly for other criteria 

- some resampling techniques intended to correct for optimism can even increase the 

optimism 

- instead of trusting a single resampling techniques, a set of resampling techniques should 

be considered 
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Appendix  

The .632+ bootstrap 

The .632+ bootstrap was introduced as a tool providing optimism corrected estimates for error 

rates 
11

. It allows for different choices of the particular form of this error rate but assumes that the 

error rate can be assessed on the level of observations, i.e. quantifies the discrepancy between a 

predicted value and the corresponding observed outcome value. As both the c statistic and the 

discrimination slope cannot be applied to single observations but only to collections of 

observations we had to slightly modify the definitions.  

The .632+ bootstrap estimate of the c statistic, 𝑐̂ .632+, is a weighted average of the apparent c 

statistic 𝑐̂app and an overly corrected bootstrap estimate 𝑐̂(1). It is constructed as follows: The 

model is fitted on each of, say 200 bootstrap resamples (i.e. random samples of size 𝑛 drawn with 

replacement) and is used to calculate the predicted probabilities for the observations omitted from 

the bootstrap resample. For each of the bootstrap resamples the c statistic is then calculated from 

the omitted observations. Finally, these c statistics are averaged over all bootstrap resamples 

yielding the estimate 𝑐̂(1).  

The .632+ bootstrap estimate of the c statistic is then given by 

𝑐̂ .632+ = (1 − 𝑤̂) ⋅ 𝑐̂app +⁡𝑤̂ ⋅ 𝑐̂(1), 

where 𝑤̂ = 0.632/(1 − 0.368⁡𝑅̂) with  𝑅̂ = (𝑐̂app − 𝑐̂(1))/(⁡𝑐̂app − 0.5). In order to ensure that 

𝑅̂ falls between 0 and 1 such that  𝑤̂ ranges from 0.632 to 1, the following modifications are 

made 

 set 𝑐̂(1) to 0.5 if 𝑐̂(1) is smaller than 0.5 and  

 set  𝑅̂ to 0 if 𝑐̂(1)> 𝑐̂app or if  0.5 > 𝑐̂app. 
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The value 0.5 occurring in these modifications and in the denominator of 𝑅̂ is the expected c-

index if the outcome is independent of the explanatory variables. The .632+ bootstrap estimate of 

the discrimination slope can be obtained analogously, just replacing 0.5 by 0 in the definitions 

above.   

Simulation of explanatory variables in the simulation study  

Table A gives information on the simulation of the three continuous and two categorical 

explanatory variables used in the simulation study: First, we sampled five standard normal 

deviates 𝑧𝑖1, … , 𝑧𝑖5 with correlation structure described in the second column of Table A. Next, 

we applied the transformations listed in the third column of Table A to obtain 𝑥𝑖1, … 𝑥𝑖5. Finally, 

we winsorized the continuous variables at the value corresponding to the third quartile plus five 

times the interquartile distance in each simulated data set.  

Table A. Construction of explanatory variables in the simulation study, following Binder, 

Sauerbrei and Royston 
19

. Square brackets [… ] indicate that the argument is truncated to the next 

integer towards 0. The indicator function 𝟏{… }⁡is equal to 1 if the argument is true and 

0⁡otherwise.  

Underlying 

variable 

Correlation of 

underlying variables 

Explanatory variable Type Correlation of 

explanatory variables 

𝑧𝑖1 𝑧𝑖2⁡(0.8) 𝑥𝑖1 = [10⁡𝑧𝑖1 + 55] cont. 𝑥𝑖2⁡(−0.6) 

𝑧𝑖2 𝑧𝑖1⁡(0.8) 𝑥𝑖2 = 𝟏{𝑧𝑖2<0.6} binary 𝑥𝑖1(−0.6) 

𝑧𝑖3 𝑧𝑖4⁡(−0.5), 𝑧𝑖5⁡(−0.3) 𝑥𝑖3 = 𝟏{𝑧𝑖3≥⁡−1.2} + 𝟏{𝑧𝑖3≥0.75} ordinal 𝑥𝑖4⁡(−0.4), 𝑥𝑖5(−0.2) 

𝑧𝑖4 𝑧𝑖3⁡(−0.5), 𝑧𝑖5⁡(0.5) 𝑥𝑖4 = [max⁡(0,100 exp(𝑧𝑖4) − 20)] cont. 𝑥𝑖3(−0.4), 𝑥𝑖5(0.4) 

𝑧𝑖5 𝑧𝑖3⁡(−0.3), 𝑧𝑖4⁡(0.5) 𝑥𝑖5 = [max(0,80 exp(𝑧𝑖5) − 20)] cont. 𝑥𝑖3(−0.2), 𝑥𝑖4(0.4) 
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Table 1. Mean difference and root mean squared difference (x100) between c statistics computed by different resampling techniques and 

the independently validated (IV) value (as presented in Table S1) for simulation scenarios with sample size of 50 and event rate of 0.25.  

  Mean difference (x100) Root mean squared difference (x100) 

Effect 

size 

Estimator LOO LPO 5-fold enhBT .632+ app LOO LPO 5-fold enhBT .632+ app 

0 ML -7.38 0.02 0.14 6.74 5.08 20.2 16.69 13.9 12.15 11.76 8.89 21.48 

0 FL -7.37 0.05 0.22 6.76 5.1 20.06 16.97 14.1 12.27 11.79 8.91 21.34 

0 FLAC -8.19 0.09 0.2 6.82 5.1 20.19 17.45 14.04 12.25 11.81 8.92 21.45 

0 LF -7.48 0.02 0.2 6.84 5.1 20.14 16.89 13.87 12.18 11.86 8.93 21.42 

0 RR -27.36 0.09 0.24 5.83 5.05 18.47 34.15 14.27 12.38 11.2 8.89 19.91 

0.5 ML -6.45 0.3 -0.13 5.41 3.08 17.5 15.77 13.14 12.1 11.24 9.57 19.12 

0.5 FL -6.65 0.22 -0.28 5.34 2.87 17.46 16.05 13.23 12.16 11.22 9.45 19.08 

0.5 FLAC -7.33 0.2 -0.23 5.43 2.91 17.56 16.5 13.2 12.15 11.24 9.49 19.16 

0.5 LF -6.59 0.27 -0.17 5.37 2.9 17.31 16.02 13.24 12.2 11.35 9.66 18.98 

0.5 RR -23.94 0.05 -0.41 4.23 2.72 15.71 33.07 13.41 12.28 11 9.56 17.69 

1 ML -5.96 -0.08 -0.93 3.11 0.61 13.17 14.38 11.91 11.44 10.43 10.36 15.35 

1 FL -5.8 -0.09 -1.01 2.99 0.33 13.12 14.52 11.89 11.47 10.46 10.31 15.32 

1 FLAC -6.39 -0.1 -0.98 3.04 0.36 13.17 14.95 11.92 11.48 10.44 10.34 15.36 

1 LF -5.87 -0.16 -0.95 2.83 0.38 12.64 14.47 11.9 11.48 10.36 10.39 14.87 

1 RR -16.18 -0.37 -1.15 2.16 0.21 11.69 27.59 11.87 11.39 10.55 10.35 14.38 
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For each estimator and each resampling technique, the mean difference was calculated as 
1

1000
∑ (𝑐𝑠 −
1000
𝑠=1 ⁡𝐶𝑠) , where 𝑐𝑠 denotes the c 

statistic calculated by the respective resampling technique and 𝐶𝑠 is the IV c statistic for the respective estimator for the 𝑠-th generated 

data set. The root mean squared difference was computed as (
1

1000
∑ (𝑐𝑠 − 𝐶𝑠)

21000⁡
𝑠=1 )

1/2

⁡. 

ML, maximum likelihood; FL, Firth’s logistic regression; FLAC, Firth’s logistic regression with added covariate; LF, penalization by log-

F(1,1) priors; RR, ridge regression. 

LOO, leave-one-out crossvalidation; LPO, leave-pair-out crossvalidation; 5-fold, 5-fold crossvalidation; enhBT, enhanced bootstrap; 

.632+, .632+ bootstrap; app, apparent estimate.  
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Table 2. Mean difference and root mean squared difference (x100) between discrimination slopes computed by resampling techniques and 

the independently validated (IV) discrimination slope (as presented in Table S2) for simulation scenarios with sample size of 50 and event 

rate of 0.25. 

  Mean difference (x100) Root mean squared difference (x100) 

Effect 

size 

Estimator LOO LPO 5-fold enhBT .632+ app LOO LPO 5-fold enhBT .632+ app 

0 ML -1.96 0.04 0.11 0.35 3.51 11.38 7.73 7.33 7.44 7.61 7.24 13.75 

0 FL -1.77 0.04 0.1 0.56 3.18 10.03 6.98 6.58 6.5 6.91 6.54 12.12 

0 FLAC -1.99 0.02 0.07 0.36 2.99 9.36 6.59 6.12 6.03 6.5 6.2 11.37 

0 LF -1.97 0.04 0.11 0.65 3.25 10.62 7.21 6.79 6.78 7.09 6.64 12.75 

0 RR -2.05 0.01 0.08 -3.25 2.15 4.11 4.79 4.16 4.02 7.1 5.46 8.17 

0.5 ML -1.78 0.14 0.15 0.59 2.94 11.26 8.27 7.9 7.93 8.36 8.02 14.03 

0.5 FL -1.65 0.1 0.03 0.66 2.62 9.84 7.4 7.04 6.87 7.29 7.11 12.13 

0.5 FLAC -1.83 0.11 0.05 0.53 2.53 9.28 7.06 6.64 6.47 6.94 6.85 11.51 

0.5 LF -1.8 0.14 0.13 0.8 2.69 10.45 7.87 7.5 7.46 7.81 7.58 12.92 

0.5 RR -1.78 0.19 0.17 -2.09 2.78 5.56 5.8 5.29 4.83 7.68 6.34 9.94 

1 ML -1.84 -0.07 -0.05 0.45 2.34 10.95 9.45 9.05 9.02 9.02 9.45 14.17 

1 FL -1.69 -0.09 -0.33 0.52 2.08 9.47 8.27 7.88 7.63 8.02 8.28 12.29 

1 FLAC -1.93 -0.14 -0.35 0.42 2.09 9.04 8 7.54 7.27 7.71 8.02 11.79 

1 LF -1.92 -0.14 -0.14 0.64 2.11 10.03 8.93 8.52 8.46 8.57 8.92 13.05 

1 RR -1.87 -0.05 -0.29 -0.69 3.41 7.65 7.42 6.94 6.5 8 7.56 11.48 
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For each estimator and each resampling technique, the mean difference was calculated as 
1

1000
∑ (𝑑𝑠 −
1000
𝑠=1 ⁡𝐷𝑠) , where 𝑑𝑠 denotes the 

discrimination slope calculated by the respective resampling technique and 𝐷𝑠 is the IV discrimination slope for the respective estimator 

for the 𝑠-th generated data set. The root mean squared difference was computed as (
1

1000
∑ (𝑑𝑠 − 𝐷𝑠)

21000⁡
𝑠=1 )

1/2

⁡. 

ML, maximum likelihood; FL, Firth’s logistic regression; FLAC, Firth’s logistic regression with added covariate; LF, penalization by log-

F(1,1) priors; RR, ridge regression. 

LOO, leave-one-out crossvalidation; LPO, leave-pair-out crossvalidation; 5-fold, 5-fold crossvalidation; enhBT, enhanced bootstrap; 

.632+, .632+ bootstrap; app, apparent estimate. 
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Supplement for “Leave-one-out crossvalidation favors inaccurate estimators” 

 

Table S1. Mean and standard deviation (x100) of independently validated (IV) c statistics for different model estimators and all 

simulation scenarios. The standard deviation strongly depends on the number of new observations (in our case 100,000) used to 

estimate the IV c statistics.  

   Mean IV c statistic (x100) Standard deviation of IV c statistic (x100) 
Sample 

size 
Event 

rate 
Effect 

size ML FL FLAC LF RR ML FL FLAC LF RR 

100 0.25 0 49.99 49.99 49.99 49.99 49.99 0.21 0.21 0.21 0.21 0.21 

100 0.25 0.5 56.87 56.83 56.84 56.96 57.15 3.43 3.44 3.44 3.45 3.6 

100 0.25 1 67.59 67.54 67.57 67.72 67.78 2.7 2.73 2.72 2.66 2.64 

100 0.5 0 50 50 50 50 50 0.18 0.18 0.18 0.18 0.18 

100 0.5 0.5 57.72 57.72 57.71 57.79 58 2.98 2.98 2.98 2.97 3.03 

100 0.5 1 68.32 68.32 68.31 68.4 68.44 2.13 2.13 2.14 2.06 2.07 

50 0.25 0 50.01 50.01 50.01 50.01 50.01 0.21 0.21 0.21 0.21 0.21 

50 0.25 0.5 55.38 55.26 55.32 55.49 55.63 4.14 4.21 4.15 4.27 4.48 

50 0.25 1 64.87 64.77 64.83 65.23 65.35 4.74 4.85 4.83 4.77 4.74 

50 0.5 0 50 50 50 50 50 0.19 0.19 0.19 0.19 0.19 

50 0.5 0.5 55.78 55.76 55.75 55.91 56.04 3.85 3.86 3.86 3.9 4.1 

50 0.5 1 65.78 65.76 65.75 66.03 66.24 3.92 3.93 3.94 3.84 3.63 

For each simulated dataset and each model estimation method, the IV c statistic was calculated from newly drawn data with 100,000 

observations. 

ML, maximum likelihood; FL, Firth’s logistic regression; FLAC, Firth’s logistic regression with added covariate; LF, penalization by log-

F(1,1) priors; RR, ridge regression. 
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Table S2. Mean and standard deviation (x100) of independently validated (IV) discrimination slope for different model estimators and all 

simulation scenarios. The standard deviation strongly depends on the number of new observations (in our case 100,000) used to 

estimate the IV discrimination slope.  

   Mean IV discrimination slope (x100) Standard deviation of IV discrimination slope (x100) 
Sample 

size 
Event 

rate 
Effect 

size ML FL FLAC LF RR ML FL FLAC LF RR 

100 0.25 0 -0.01 -0.01 -0.01 -0.01 0 0.08 0.07 0.07 0.07 0.03 

100 0.25 0.5 3.27 3.05 2.95 3.24 1.73 1.97 1.84 1.8 1.95 1.65 

100 0.25 1 11.11 10.42 10.12 11.01 8.25 3.28 3.11 3.12 3.25 3.98 

100 0.5 0 0 0 0 0 0 0.07 0.07 0.07 0.07 0.03 

100 0.5 0.5 4.23 3.92 3.91 4.19 2.4 2.01 1.88 1.88 1.99 1.82 

100 0.5 1 13.49 12.63 12.62 13.37 10.73 3.11 2.99 2.99 3.07 3.89 

50 0.25 0 0 0 0 0 0 0.12 0.1 0.1 0.11 0.06 

50 0.25 0.5 3.35 2.95 2.82 3.28 1.57 2.77 2.51 2.4 2.73 2.1 

50 0.25 1 11.05 9.83 9.41 10.87 7.09 4.71 4.31 4.26 4.63 5.27 

50 0.5 0 0 0 0 0 0 0.12 0.1 0.1 0.11 0.06 

50 0.5 0.5 4.03 3.53 3.52 3.97 1.94 2.92 2.61 2.6 2.87 2.29 

50 0.5 1 13.08 11.61 11.58 12.86 8.92 4.48 4.12 4.13 4.39 5.41 

For each simulated dataset and each model estimation method, the IV discrimination slope was calculated from newly drawn data with 

100,000 observations. 

ML, maximum likelihood; FL, Firth’s logistic regression; FLAC, Firth’s logistic regression with added covariate; LF, penalization by log-

F(1,1) priors; RR, ridge regression. 
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Figure S1. Median and interquartile range of differences between c statistics computed by data 

resampling techniques and independently validated (IV) c statistic for five different model 

estimators for the simulation settings with 50 observations, an event rate of 0.25 and either no 

(left hand side) or strong effects (right hand side). Mean differences and root mean squared 

differences between estimated c statistics and IV c statistic are presented in Table 1. 

ML, maximum likelihood; FL, Firth’s logistic regression; FLAC, Firth’s logistic regression with 

added covariate; LF, penalization by log-F(1,1) priors; RR, ridge regression. 

LOO, leave-one-out crossvalidation; LPO, leave-pair-out crossvalidation; 5-fold, 5-fold 

crossvalidation; enhBT, enhanced bootstrap; .632+, .632+ bootstrap; app, apparent estimate. 
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Figure S2. Median and interquartile range of differences between c statistics computed by data 

resampling techniques and independently validated (IV) c statistic for five different model 

estimators for the simulation settings with 50 observations, an event rate of 0.5 and either no 

(left hand side) or strong effects (right hand side). Scenarios with an event rate of 0.25 are 

described in Figure S1. 

ML, maximum likelihood; FL, Firth’s logistic regression; FLAC, Firth’s logistic regression with 

added covariate; LF, penalization by log-F(1,1) priors; RR, ridge regression. 

LOO, leave-one-out crossvalidation; LPO, leave-pair-out crossvalidation; 5-fold, 5-fold 

crossvalidation; enhBT, enhanced bootstrap; .632+, .632+ bootstrap; app, apparent estimate. 
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Figure S3. Median and interquartile range of differences between discrimination slopes 

computed by data resampling techniques and independently validated (IV) discrimination slope 

for five different model estimators for the simulation settings with 50 observations, an event 

rate of 0.25 and either no (left hand side) or strong effects (right hand side). Mean differences 

and root mean squared differences between estimated discrimination slopes and IV 

discrimination slope are presented in Table 2. 

ML, maximum likelihood; FL, Firth’s logistic regression; FLAC, Firth’s logistic regression with 

added covariate; LF, penalization by log-F(1,1) priors; RR, ridge regression. 

LOO, leave-one-out crossvalidation; LPO, leave-pair-out crossvalidation; 5-fold, 5-fold 

crossvalidation; enhBT, enhanced bootstrap; .632+, .632+ bootstrap; app, apparent estimate.  
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Figure S4. Median and interquartile range of differences between discrimination slopes 

computed by data resampling techniques and independently validated (IV) discrimination slope 

for five different model estimators for the simulation settings with 50 observations, an event 

rate of 0.5 and either no (left hand side) or strong effects (right hand side). Scenarios with an 

event rate of 0.25 are described in Figure S3. 

ML, maximum likelihood; FL, Firth’s logistic regression; FLAC, Firth’s logistic regression with 

added covariate; LF, penalization by log-F(1,1) priors; RR, ridge regression. 

LOO, leave-one-out crossvalidation; LPO, leave-pair-out crossvalidation; 5-fold, 5-fold 

crossvalidation; enhBT, enhanced bootstrap; .632+, .632+ bootstrap; app, apparent estimate.  
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Figure S5: Independently validated (solid line) and leave-one-out crossvalidated (dashed line) c 

statistics for different penalization strengths in ridge regression on six artificially constructed 

data sets. The data were created in the same way as for one of the scenarios in our simulation 

study (null scenario, sample size of 50, marginal event rate of 0.25). The x-axis shows the tuning 

parameter in ridge regression (lambda in the R package glmnet) with higher values 

corresponding to stronger penalization. For each data set we fitted 96 ridge regression models 

corresponding to a series of log-equidistant tuning values. As in our simulation study, the 

independently validated c statistics were obtained by validating the models on an independent 

data set consisting of 100,000 observations. As expected, the independently validated c 

statistics are very close to the true value of 0.5.    

LOO, leave-one-out crossvalidation; IV, independently validated. 

 

 

 

 


