

Georg Heinze and Angelika Geroldinger Medical University of Vienna Taylor

Edward Albee's
Who's Afraid of
VirginiaWoolf

• Simple 2 x 2 table:

	X=0	X=1	
Y=0	7	1	8
Y=1	2	4	6
	9	5	14

• Suppose we are interested in the log odds ratio of X:

•
$$\beta_1 = \log \frac{n_{11}/n_{10}}{n_{01}/n_{00}} = \log \frac{4/1}{2/7} = 2.6$$

- The likelihood for the example:
- $L(\beta|x,y) = \pi(X=1)^{n_{11}}$ $(1-\pi(X=1))^{n_{10}}$ $\pi(X=0)^{n_{01}}$ $(1-\pi(X=0))^{n_{00}}$

with

$$\pi(X = x) =$$

$$1/(1 + \exp(-\beta_0 - \beta_1 x))$$

Jeffreys prior: $p(\beta) = |I(\beta)|^{1/2}$

$$I(\beta)_{jk} = -\partial \log L(\beta) / \partial \beta_j \partial \beta_k \stackrel{\text{go}}{\otimes}$$

Weakly informative prior Automatic solution Nice properties

Chen et al JASA 2008, Firth Biometrika 1993, Heinze and Schemper StatMed 2002

• The posterior:

$$p(\beta|x,y) = p(\beta)L(\beta|x,y)$$

 As expected, the posterior ,collapses' prior and likelihood

Using priors in practice

General prior Derive posterior by simulation (MCMC)

Ridge regression Prior can be expressed as likelihood penalty
 Firth's method/Jeffreys

Conjugate prior
 Such that posterior has same algebraic form

as prior,

can be expressed as pseudo-observations

(data augmentation prior)

• In special cases Jeffreys prior reduces to data augmentation

• Augmented 2 x 2 table:

	X=0	X=1	
Y=0	7.5	1.5	9
Y=1	2.5	4.5	7
	10	6	16

• Maximization of the likelihood of augmented table is now equivalent to finding the posterior mode with original data and Jeffreys prior

Example of Greenland 2010

• 2x2 table

	X=0	X=1		
Y=0	315	5	320	
Y=1	31	1	32	Rare events
	346	6	352	

Rare exposure

- Prior and likelihood do not ,collapse'
- The posterior mode is more extreme than the ML estimate

How can that happen???

An even more extreme example from Greenland 2010

• 2x2 table

	X=0	X=1	
Y=0	25	5	30
Y=1	5	1	6
	30	6	36

- Here we immediately see that the odds ratio = 1 ($\beta_1=0$)
- But the estimate from augmented data: odds ratio = 1.26 (try it out!)

Reason for Bayesian non-collapsilibity

- We look at the association of X and Y
- We could treat the origin of data as a ,ghost factor' G
- G=0 for original table
- G=1 for pseudo data
- We ignore that the conditional association of X and Y given G is different from the marginal association

- We should distinguish BNC in a single data set from a systematic increase in bias of a method (in simulations)
- (This is only of interest to frequentists)
- Simulation of the example:
- Fixed groups x=0 and x=1, P(Y=1|X) as observed in example
- True log OR=0.709

	X=0	X=1	
Y=0	315	5	320
Y=1	31	1	32
	346	6	352

• True value: log OR = 0.709

Parameter	ML	Jeffreys-Firth	
Bias eta_1	*	+18%	
RMSE eta_1	*	0.86	
Bayesian non- collapsibility $oldsymbol{eta}_2$		63.7%	

^{*} Separation causes β_1 be undefined ($-\infty$) in 31.7% of the cases

- To overcome Bayesian non-collapsibility,
 Greenland and Mansournia (2015)
 have proposed not to impose a prior on the intercept
- They suggest a logF(1,1) prior for all other regression coefficients
- The method can be used with standard software because it is a data augmentation prior

• Re-running the simulation with the logF(1,1) method yields:

Parameter	ML	Jeffreys-Firth	logF(1,1)
Bias eta_1	*	+18%	
RMSE eta_1	*	0.86	
Bayesian non- collapsibility $oldsymbol{eta}_2$		63.7%	0%

^{*} Separation causes β_1 be undefined ($-\infty$) in 31.7% of the cases

• Re-running the simulation with the logF(1,1) method yields:

Parameter	ML	Jeffreys-Firth	logF(1,1)
Bias eta_1	*	+18%	-52%
RMSE eta_1	*	0.86	1.05
Bayesian non- collapsibility $oldsymbol{eta}_2$		63.7%	0%

^{*} Separation causes β_1 be undefined ($-\infty$) in 31.7% of the cases

Other, more subtle occurrences of Bayesian non-collapsibility

- Ridge regression: normal prior around 0
- usually implies bias towards zero,
- But:
- With correlated predictors with different effect sizes, for some predictors the bias can be away from zero

Simulation of bivariable log reg models

- $X_1, X_2 \sim \text{Bin}(0.5)$ with correlation r = 0.8, n = 50
- $\beta_1 = 1.5$, $\beta_2 = 0.1$

Parameter	ML	Ridge (CV λ)	logF(1,1)	Jeffreys-Firth
Bias eta_1	+40% (+9%*)	-26%	-2.5%	+1.2%
RMSE eta_1	3.04 (1.02*)	1.01	0.73	0.79
Bias eta_2	-451% (+16%*)	+48%	+77%	+16%
RMSE eta_2	2.95 (0.81*)	0.73	0.68	0.76
Bayesian non-collapsibility $oldsymbol{eta}_2$		25%	28%	23%

^{*}excluding 2.7% separated samples

Conclusion

Bayesian:

- Bayesian non-collapsibility is usually unexpected
- Unintended in data analyses
- Can be avoided in univariable models,
 but no general rule to avoid it in multivariable models

Frequentist:

- Frequentist looks at repeated-sampling properties (bias, RMSE)
- Likelihood penalization can often decrease RMSE (even with BNC)
- Likelihood penalization ≠ guaranteed shrinkage
- Appropriate coverage of CI? Needs unbiased estimates!

