

# Firth's penalized likelihood logistic regression: accurate effect estimates AND predictions?

Angelika Geroldinger, Rainer Puhr, Mariana Nold, Lara Lusa, Georg Heinze

18.3.2016 DAGStat 2016 – "Statistics under one umbrella"



This work is supported by FWF under project number I 2276.

#### Example: Bias in logistic regression

Consider a model containing only intercept, no regressors: logit  $(P(Y = 1)) = \beta_0$ .

With *n* observations, *k* events, the ML estimator of  $\beta_0$  is given by:  $\widehat{\beta_0} = \text{logit } (k/n).$ 

Since k/n is unbiased,  $\widehat{\beta_0}$  is biased!

(If  $\widehat{\beta_0}$  was unbiased, expit $(\widehat{\beta_0})$  would be biased!)



#### Firth type penalization

In exponential family models with canonical parametrization the **Firth-type penalized likelihood** is given by

$$L^*(\beta) = L(\beta) \det(I(\beta))^{1/2},$$

where  $I(\beta)$  is the Fisher information matrix and  $L(\beta)$  is the likelihood.

Firth-type penalization

- removes the first-order bias of the ML-estimates of  $\beta$ ,
- is **bias-preventive** rather than corrective,
- is available in **Software** packages such as SAS, R, Stata...

#### Firth type penalization

In exponential family models with canonical parametrization the **Firth-type penalized likelihood** is give **Jeffrey's invariant prior**  $L^*(\beta) = L(\beta) \det(I(\beta))^{1/2}$ ,

where  $I(\beta)$  is the Fisher information matrix and  $L(\beta)$  is the likelihood.

Firth-type penalization

- removes the first-order bias of the ML-estimates of  $\beta$ ,
- is **bias-preventive** rather than corrective,
- is available in **Software** packages such as SAS, R, Stata...

#### Firth type logistic regression

In logistic regression, the penalized likelihood is given by  $L^*(\beta) = L(\beta) \det(X^t W X)^{1/2}$ , with

$$W = \text{diag}(\text{expit}(X_i\beta)(1 - \text{expit}(X_i\beta)))$$
  
=  $\text{diag}(\pi_i(1 - \pi_i))$ .

• Firth-type estimates always exist.



- predictions are usually pulled towards  $\frac{1}{2}$ ,
- coefficients towards zero.

#### Firth type logistic regression (FL)

For logistic regression with one binary regressor,

Firth's bias correction amounts to adding 1/2 to each cell:



#### FLAC

Split the augmented data into the original and pseudo data:



Define **F**irth type **L**ogistic regression with **A**dditional **C**ovariate as the stratified analysis of the original and pseudo data:

 $OR_{BvsA} = 6.63$ av. pred. prob. = 0.04 = observed proportion of events!

#### FLAC

#### In the general case (idea):

One can show, that Firth-type penalization is equivalent to ML estimation of augmented data.

FLAC estimates can be obtained by the following steps:

- 1) Define an indicator variable discriminating between original and pseudo data.
- 2) Apply ML on the augmented data including the indicator.



#### FLIC

Firth type Logistic regression with Intercept Correction:

Modify the intercept in Firth-type estimates such that the average pred. prob. becomes equal to the observed proportion of events.

unbiased pred. probabilities

effect estimates are the same as in Firth type logistic regression

#### Other methods for accurate pred.

## In our simulation study, we compared FLIC and FLAC to the following methods:

- weakened Firth-type penalization, with  $L(\beta)^* = L(\beta) \det(X^t W X)^{\tau}, \tau < 1/2$ ,
- ridge regression,
- penalization by log-F(1,1) priors,
- penalization by Cauchy priors with scale parameter=2.5.

(RR) (LF) (CP)

(WF)

### log-F(1,1) priors (LF)

Penalizing by log-F(1,1) prior gives  $L(\beta)^* = L(\beta) \cdot \prod \frac{e^{\frac{\beta_j}{2}}}{1+e^{\beta_j}}$ .

This amounts to the following modification of the data set:



We follow Greenland and Mansournia, 2015:

- no penalization of the intercept,
- no scaling of variables.

### Cauchy priors (CP)

Cauchy priors (scale=2.5) have heavier tails than log-F(1,1)-priors:



We follow Gelman et al., 2008:

- all variables are centered,
- binary variables are coded to have a range of 1,
- all other variables are scaled to have standard deviation 0.5,
- the intercept is penalized by Cauchy(0,10).

This is implemented in the function bayesg1m in the R-package arm.

#### Revisiting the toy example



The different methods give:



#### Simulation study: the set-up

# We investigated the performance of FLIC and FLAC, simulating 1000 data sets for 45 scenarios with:

- 500, 1000 or 1400 observations,
- event rates of 1%, 2%, 5% or 10%
- 10 covariables (6 cat., 4 cont.), see Binder et al., 2011
- none, moderate and strong effects of positive and mixed signs

#### Main evaluation criteria:

bias and RMSE of

- predictions and
- effect estimates



#### Average predicted probability

For the scenarios with small effect size:

| Ν    | method | rel.bias        |      |      |     | rel.RMSE        |      |      |      |     |
|------|--------|-----------------|------|------|-----|-----------------|------|------|------|-----|
|      |        | exp. event rate |      |      |     | exp. event rate |      |      |      |     |
|      |        | 0.01            | 0.02 | 0.05 | 0.1 |                 | 0.01 | 0.02 | 0.05 | 0.1 |
| 500  | WF     |                 |      | 3.7  | 1.6 |                 |      |      | 3.8  | 1.6 |
|      | FL     |                 |      | 18.2 | 7.8 |                 |      |      | 18.7 | 7.9 |
|      | CP     |                 |      | 0.2  | 0.1 |                 |      |      | 0.2  | 0.1 |
| 1400 | WF     |                 | 3.7  | 1.3  | 0.6 |                 |      | 3.8  | 1.3  | 0.6 |
|      | FL     |                 | 18.5 | 6.6  | 2.8 |                 |      | 19.0 | 6.7  | 2.8 |
|      | CP     |                 | 0.2  | 0.1  | 0.0 |                 |      | 0.3  | 0.1  | 0.0 |
| 3000 | WF     | 3.6             | 1.7  | 0.6  | 0.3 |                 | 3.7  | 1.7  | 0.6  | 0.3 |
|      | FL     | 17.9            | 8.6  | 3.1  | 1.3 |                 | 18.3 | 8.6  | 3.1  | 1.3 |
|      | CP     | 0.3             | 0.1  | 0.0  | 0.0 |                 | 0.3  | 0.1  | 0.0  | 0.0 |

All other methods (ML, FLIC, FLAC, LF and RR) yield average pred. prob. equal to the proportion of events.

#### Average predicted probability

For the scenarios with coefficients of mixed signs and small effect size:

| Ν    | method | rel.bias        |      |                          |     |     | rel.RMSE        |      |      |     |  |  |
|------|--------|-----------------|------|--------------------------|-----|-----|-----------------|------|------|-----|--|--|
|      |        | exp. event rate |      |                          |     |     | exp. event rate |      |      |     |  |  |
|      |        | 0.01            | 0.02 | 0.05                     | 0.1 | -   | 0.01            | 0.02 | 0.05 | 0.1 |  |  |
| 500  | WF     |                 |      | 3.7                      | 1.6 |     |                 |      | 3.8  | 1.6 |  |  |
|      | FL     |                 |      | 18.2                     | 7.8 |     |                 |      | 18.7 | 7.9 |  |  |
|      | CP     |                 |      | 0.2                      | 0.1 |     |                 | l    | 0.2  | 0.1 |  |  |
| 1400 | WF     |                 | 3.7  | 1. Ne                    | 1.3 | 0.6 |                 |      |      |     |  |  |
|      | FL     |                 | 18.5 | 6.                       |     | L:  | 6.7             | 2.8  |      |     |  |  |
|      | CP     |                 | 0.2  | 0. IOOK at this scenario |     |     |                 |      | 0.1  | 0.0 |  |  |
| 3000 | WF     | 3.6             | 1.7  | 0.6                      | 0.3 |     | 3.7             | 1.7  | 0.6  | 0.3 |  |  |
|      | FL     | 17.9            | 8.6  | 3.1                      | 1.3 |     | 18.3            | 8.6  | 3.1  | 1.3 |  |  |
|      | CP     | 0.3             | 0.1  | 0.0                      | 0.0 |     | 0.3             | 0.1  | 0.0  | 0.0 |  |  |

All other methods (ML, FLIC, FLAC, LF and RR) yield average pred. prob. equal to the proportion of events.







![](_page_19_Figure_2.jpeg)

![](_page_20_Figure_2.jpeg)

![](_page_21_Figure_2.jpeg)

![](_page_22_Figure_2.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_24_Figure_2.jpeg)

#### Coefficients

Absolute bias and RMSE of standardized coefficients, averaged over all 10 covariables excluding the intercept:

| Ν   | $\mathbf{E}(\mathbf{y})$ | method  | bias (×1000)<br>effect size |     |     | RM:<br>e | RMSE (×1000)<br>effect size |     |  |  |
|-----|--------------------------|---------|-----------------------------|-----|-----|----------|-----------------------------|-----|--|--|
|     |                          |         | 0                           | 0,5 | 1   | 0        | 0,5                         | 1   |  |  |
| 500 | 0.05                     | ML      | 23                          | 17  | 29  | 277      | 266                         | 288 |  |  |
|     |                          | WF      | 19                          | 14  | 21  | 272      | 261                         | 281 |  |  |
|     |                          | FL/FLIC | 7                           | 5   | 9   | 253      | 244                         | 259 |  |  |
|     |                          | FLAC    | 17                          | 16  | 16  | 239      | 235                         | 252 |  |  |
|     |                          | LF      | 22                          | 10  | 12  | 265      | 252                         | 266 |  |  |
|     |                          | CP      | 18                          | 14  | 24  | 245      | 238                         | 251 |  |  |
|     |                          | RR      | 3                           | 109 | 124 | 78       | 166                         | 244 |  |  |

#### Coefficients

Similar patterns can be observed across all 45 scenarios:

![](_page_26_Figure_2.jpeg)

#### Conclusions

- For rare events, FL-predictions are severely biased (relative bias of up to 20% in our simulations).
- Both, FLIC and FLAC improved on predictions by FL, with identical effect estimates or effect estimates of lower RMSE.
- RR outperformed all other methods with respect to RMSE of coefficients and predictions, but introduces bias towards 0. Confidence intervals?
- LF performed slightly worse than CP. (Due to data preprocessing?)

Based on our simulations, if one is interested in effect estimates and predictions, we recommend to use

- RR (whenever confidence intervals are not needed)
- FLAC as a compromise between optimization of bias and RMSE.

#### Literature

- Binder H, Sauerbrei W and Royston P. Multivariable Model-Building with Continuous Covariates: Performance Measures and Simulation Design 2011. Technical Report FDM-Preprint 105, University of Freiburg, Germany.
- Elgmati E, Fiaccone RL, Henderson R and Matthews JNS. Penalised logistic regression and dynamic prediction for discrete-time recurrent event data. Lifetime Data Analysis 2015; 12(4): 542-560.
- Firth D. Bias reduction of maximum likelihood estimates. Biometrika 1993; 80(1): 27-38.
- Gelman A, Jakulin A, Pittau M and Su YS. A Weakly Informative Default Prior Distribution for Logistic and Other Regression Models. *The Annals of Applied Statistics* 2008; 2(4):1360–1383.
- Greenland S and Mansournia M. Penalization, Bias Reduction, and Default Priors in Logistic and Related Categorical and Survival regressions. *Statistics in Medicine* 2015; 34(23):3133-3143.
- Heinze G and Schemper M. A solution to the problem of separation in logistic regression. Statistics in Medicine 2002; 21(16): 2409-2419.
- Kosmidis I. Bias in parametric estimation: reduction and useful side-effects. WIRE Computational Statistics 2014; 6(3): 185-196.
- Puhr R, Heinze G, Nold M, Lusa L and Geroldinger A. Predicting rare events with penalized logistic regression. Work in progress.