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Example: Bias in logistic regression 
Consider a model containing only intercept, no regressors:   

logit (𝑃 𝑌 = 1 ) = 𝛽0.  

With 𝑛 observations, 𝑘 events, the ML estimator of 𝛽0 is given by:  

     𝛽0 = logit (k/n). 

 
Since k/n is unbiased,    

𝛽0  is biased!  
 

 

(If 𝛽0  was unbiased,  

expit 𝛽0  would be biased!) 



Firth type penalization  

In exponential family models with canonical parametrization  the 
Firth-type penalized likelihood is given by  

𝐿∗ 𝛽 = 𝐿 𝛽 det( 𝐼 𝛽 )1/2,  

where 𝐼 𝛽  is the Fisher information matrix and 𝐿 𝛽  is the 
likelihood. 

 

Firth-type penalization  

• removes the first-order bias of the ML-estimates of 𝛽, 

• is bias-preventive rather than corrective,  

• is available in Software packages such as SAS, R, Stata… 
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Firth type logistic regression  

In logistic regression, the penalized likelihood is given by  

𝐿∗ 𝛽 = 𝐿 𝛽 det(𝑋𝑡𝑊𝑋)1/2, with 

 
𝑊 = diag expit Xi𝛽 (1 − expit Xi𝛽 )  

= diag(𝜋𝑖 1 − 𝜋𝑖 ) . 

 

• Firth-type estimates always exist.  

𝑊 is maximised at 𝜋𝑖 =
1

2
, i.e. at 𝛽 = 0, thus 

• predictions are usually pulled towards 
1

2
, 

• coefficients towards zero. 



Firth type logistic regression (FL)  

For logistic regression with one binary regressor,        

Firth’s bias correction amounts to adding 1/2 to each cell:   
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FLAC 

original 

Split the augmented data into the original and pseudo data:  

pseudo augmented 

Define Firth type Logistic regression with Additional Covariate 
as the stratified analysis of the original and pseudo data: 
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ORBvsA = 6.63 
av. pred. prob. = 0.04 = observed proportion of events! 
 
 

+ 



FLAC 

In the general case (idea): 

One can show, that Firth-type penalization is equivalent to ML 
estimation of augmented data.  

FLAC estimates can be obtained by the following steps: 

1) Define an indicator variable discriminating between original and 
pseudo data. 

2) Apply ML on the augmented data including the indicator.   

 

           unbiased pred. probabilities 

 



FLIC 

Firth type Logistic regression with Intercept Correction: 

Modify the intercept in Firth-type estimates such that the average 
pred. prob. becomes equal to the observed proportion of events. 

 

unbiased pred. probabilities 

effect estimates are the same as in Firth type logistic regression 



Other methods for accurate pred. 

In our simulation study, we compared FLIC 
and FLAC to the following methods: 

• weakened Firth-type penalization, with 
𝐿 𝛽 ∗ = 𝐿 𝛽 det(𝑋𝑡𝑊𝑋)𝜏, 𝜏 < 1/2, 

• ridge regression, 

• penalization by log-F(1,1) priors, 

• penalization by Cauchy priors with scale 
parameter=2.5. 
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log-F(1,1) priors (LF) 

Penalizing by log-F(1,1) prior gives 𝐿 𝛽 ∗ = 𝐿 𝛽 ⋅ ∏ 
𝑒

𝛽𝑗
2

1+𝑒
𝛽𝑗
. 

This amounts to the following modification of the data set: 
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of weight ½  

We follow Greenland and Mansournia, 2015: 
• no penalization of the intercept,  
• no scaling of variables.   



Cauchy priors (CP) 

Cauchy priors (scale=2.5) have heavier tails than log-F(1,1)-priors: 

 

We follow Gelman et al., 2008: 
• all variables are centered,  
• binary variables are coded to have a range of 1, 
• all other variables are scaled to have standard deviation 0.5, 
• the intercept is penalized by Cauchy(0,10).  

This is implemented in the function bayesglm in the R-package arm. 

 



Revisiting the toy example 
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The different methods give: 

 

unbiased  
pred. prob.: (    ) 



Simulation study: the set-up 

We investigated the performance of FLIC and FLAC,  

simulating 1000 data sets for 45 scenarios with: 

• 500, 1000 or 1400 observations, 

• event rates of 1%, 2%, 5% or 10% 

• 10 covariables (6 cat., 4 cont.),  

see Binder et al., 2011 

• none, moderate and strong effects  

of positive and mixed signs 

 

Main evaluation criteria: 

bias and RMSE of  

– predictions and  

– effect estimates 



Average predicted probability 

All other methods (ML, FLIC, FLAC, LF and RR) yield average 
pred. prob. equal to the proportion of events.   

For the scenarios with small effect size: 



Average predicted probability 

All other methods (ML, FLIC, FLAC, LF and RR) yield average 
pred. prob. equal to the proportion of events.   

For the scenarios with coefficients of mixed signs and small 
effect size: 

Next, we have a closer 
look at this scenario… 



Predictions by true lin. pred. 
sample size=500, prop. of events= 5%, small effect size  

meth. (RMSE x 10000)  



Predictions by true lin. pred. 
sample size=500, prop. of events= 5%, small effect size  

meth. (RMSE x 10000)  



Predictions by true lin. pred. 
sample size=500, prop. of events= 5%, small effect size  

meth. (RMSE x 10000)  



Predictions by true lin. pred. 
sample size=500, prop. of events= 5%, small effect size  

meth. (RMSE x 10000)  



Predictions by true lin. pred. 
sample size=500, prop. of events= 5%, small effect size  

meth. (RMSE x 10000)  



Predictions by true lin. pred. 
sample size=500, prop. of events= 5%, small effect size  

meth. (RMSE x 10000)  



Predictions by true lin. pred. 
sample size=500, prop. of events= 5%, small effect size  

meth. (RMSE x 10000)  



Predictions by true lin. pred. 
sample size=500, prop. of events= 5%, small effect size  

meth. (RMSE x 10000)  



Predictions by true lin. pred. 
sample size=500, prop. of events= 5%, small effect size  

meth. (RMSE x 10000)  



Coefficients  

Absolute bias and RMSE of standardized coefficients, averaged 
over all 10 covariables excluding the intercept: 



Coefficients 
Similar patterns can be observed across all 45 scenarios: 



Conclusions  
• For rare events, FL-predictions are severely biased  

(relative bias of up to 20% in our simulations). 
• Both, FLIC and FLAC improved on predictions by FL, with 

identical effect estimates or effect estimates of lower RMSE. 
• RR outperformed all other methods with respect to RMSE of 

coefficients and predictions, but introduces bias towards 0. 
Confidence intervals? 

• LF performed slightly worse than CP.  
(Due to data preprocessing?) 

 
Based on our simulations, if one is interested in effect estimates 
and predictions, we recommend to use 

• RR (whenever confidence intervals are not needed) 
• FLAC as a compromise between optimization of bias and 

RMSE.  
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