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Bias in logistic regression (coefficients)

Consider a model containing only intercept, no regressors:
logit (P(Y = 1)) = f,.

With n observations, k events, the ML estimator of B, is

given by:

e
B, = logit (k/n).
e
Since k/n is unbiased, ;; 2
ko)
B, is biased! o
(.(ID —

Average predicted probabilities
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are unbiased.
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Firth’s penalization

In exponential family models with canonical parametrization
Firth’s penalized likelihood is given by

L*(B) = L(B) det(1(B)Y?,

where I(B) is the Fisher information matrix and L(B) is the
likelihood.

Firth’s penalization
« removes the first-order bias of ML-estimates of g,
* is bias-preventive rather than corrective,

 is available in Software packages such as SAS, R, Stata...
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Firth’s logistic regression (FL)

In logistic regression, the penalized likelihood is given by
L*(B) = L(B) det(X'WX)1/2, with

W = diag(expit(X;B)(1 — expit(X;B))) = diag(m;(1 — m;))

:’> . penalized estimates always exist.

« W is maximised at ; = % i.e. at § =0, thus

- L. 1
« predictions are usually pulled towards =
« coefficients towards zero.
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Firth’s logistic regression (FL)

For logistic regression with one binary regressor,
Firth’s bias correction amounts to adding 1/2 to each cell:

original augmented
IRNEE . NN
E 4]4 T penalization g E 4]15 ?’i
event rate = % = 0.04 av. pred. prob. = 0.054
ORgysp = 11 ORgysp = 9.89

@ MEDICAL UNIVERSITY New modifications of Firth's penalized logistic regression

OF VIENNA Section for Clinical Biometrics



@

FLAC

Split the augmented data into the original and pseudo data:

augmented original pseudo

A [B | A B N A B
[] 445 45 > 44 4 + [ o5 o5
B s 15 1 ] B os o5

Define Firth’s Logistic regression with Additional Covariate
as the stratified analysis of the original and pseudo data:

ORBVSA — 663
av. pred. prob. = 0.04 = observed proportion of events!
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FLAC

In the general case (idea):

One can show, that Firth’s penalization is equivalent to
ML estimation of augmented data.

FLAC estimates can be obtained by the following steps:

1) Define an indicator variable discriminating between
original and pseudo data.

2) Apply ML on the augmented data including the indicator.

J unbiased pred. probabilities
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FLIC

Firth’s Logistic regression with Intercept Correction:

Modify the intercept in penalized estimates such that the
average pred. probabilities becomes equal to the observed
proportion of events.

Junbiased pred. probabilities

effect estimates are the same as in Firth’s logistic
regression
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Simulation study

We want to investigate

 individual predicted probabilities by FLIC and FLAC
« effect estimates by FLAC

« compare not only against ML and FL but also against
« weakened Firth’s penalization, with

(WF)

L(B)* = L(B) det(X*'WX)*, 1 < 1/2,
 ridge regression, (RR)
« penalization by log-F(1,1) priors, (LF)
. penalization by Cauchy priors (CP)

with scale parameter=2.5.
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Simulation study: the set-up
We simulated 1000 data sets for 45 scenarios with:
« 500, 1000 or 1400 observations,
« event rates of 1%, 2%, 5% or 10%
10 covariables (6 cat., 4 cont.), see Binder et al., 201 1

* none, moderate and strong effects

Main evaluation criteria: / \ / \
Bias and RMSE of 03 G
M
« pred. prob. and

- effect estimates

0.5
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Pred. probabilities by true linear predictor
Eth' (RMSE x 10000)
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(sample size=500, prop. of events= 5%, small effect size)
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Pred. probabilities by true linear predictor
meth. (RMSE x 10000)
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Pred. probabilities by true linear predictor
meth. (RMSE x 10000)
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Pred. probabilities by true linear predictor
meth. (RMSE x 10000)
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Pred. probabilities by true linear predictor
meth. (RMSE x 10000)
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Pred. probabilities by true linear predictor
meth. (RMSE x 10000)
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Pred. probabilities by true linear predictor
meth. (RMSE x 10000)

© 7 ML (403)
— WF (408)
N — FL (430)
= FLIC (375)
i L - FLAC (360)
: o e | F (391)
5 —_\ o
8 o e % s CP (377)
= S RR (282)
%) b L(})J
® g
o H o
[0} ©
© o
(@] ©
(73] O
/2]
< o
@ 1 | I N Y I | 1 | N I I N Y | 1
' | | | | 2 | | | |
-4 -3 -2 -1 -4 -3 -2 -1
true linear predictor true linear predictor

(sample size=500, prop. of events= 5%, small effect size)

@ MEDICAL UNIVERSITY New modifications of Firth's penalized logistic regression

OF VIENNA Section for Clinical Biometrics



Pred. probabilities by true linear predictor
meth. (RMSE x 10000)
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Pred. probabilities by true linear predictor
meth. (RMSE x 10000)
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Coefficients

Absolute bias and RMSE of standardized coefficients,
averaged over all 10 covariables excluding the intercept:

N E(y) method bias (< 1000) RMSE (< 1000)
effect size effect size
0 0,5 | 0 0,5 1
500 0.05 ML 23 17 29 277 266 288
WF 19 14 21 272 261 281
FL/FLIC 7 5 9 253 244 259
FLAC 17 16 16 239 235 252
LF 22 10 12 265 252 266
CP 18 14 24 245 238 251
RR 3 109 124 78 166 244
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Coetficients
Similar patterns can be observed across all 45 scenarios:
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Conclusions

 For rare events, FL-predictions are severely biased
(relative bias of up to 20% in our simulations).

« Both, FLIC and FLAC improved on predictions by FL, with
identical effect estimates or effect estimates of lower RMSE.

« RR outperformed all other methods with respect to RMSE of
coefficients and predictions, but introduces bias towards O.
Confidence intervals?

Based on our simulations, if one is interested in effect
estimates and predictions, we recommend to use
« RR (whenever confidence intervals are not needed)
« FLAC as a compromise between optimization of bias and
RMSE.
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