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Bias in logistic regression (coefficients) 
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Consider a model containing only intercept, no regressors:   

logit (𝑃 𝑌 = 1 ) = 𝛽0.  

With 𝑛 observations, 𝑘 events, the ML estimator of 𝛽0 is 

given by:  

     𝛽0 = logit (k/n). 

 

Since k/n is unbiased,    

𝛽0  is biased!  

 

Average predicted probabilities  

are unbiased. 
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Firth’s penalization  
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In exponential family models with canonical parametrization  

Firth’s penalized likelihood is given by  

𝐿∗ 𝛽 = 𝐿 𝛽 det( 𝐼 𝛽 )1/2,  

where 𝐼 𝛽  is the Fisher information matrix and 𝐿 𝛽  is the 

likelihood. 

Firth’s penalization  

• removes the first-order bias of ML-estimates of 𝛽, 

• is bias-preventive rather than corrective,  

• is available in Software packages such as SAS, R, Stata… 
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Firth’s logistic regression (FL)  
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In logistic regression, the penalized likelihood is given by  

𝐿∗ 𝛽 = 𝐿 𝛽 det(𝑋𝑡𝑊𝑋)1/2, with  

𝑊 = diag expit Xi𝛽 (1 − expit Xi𝛽 ) = diag(𝜋𝑖 1 − 𝜋𝑖 ) . 

 

• penalized estimates always exist.  

• 𝑊 is maximised at 𝜋𝑖 =
1

2
, i.e. at 𝛽 = 0, thus 

• predictions are usually pulled towards 
1

2
, 

• coefficients towards zero. 
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Firth’s logistic regression (FL)  
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For logistic regression with one binary regressor,        

Firth’s bias correction amounts to adding 1/2 to each cell:   
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FLAC 
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original 

Split the augmented data into the original and pseudo data:  

 

 

 

 

 

 

 

Define Firth’s Logistic regression with Additional Covariate 

as the stratified analysis of the original and pseudo data: 

 

OR
BvsA

 = 6.63 
av. pred. prob. = 0.04 = observed proportion of events! 
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FLAC 
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In the general case (idea): 

One can show, that Firth’s penalization is equivalent to 

ML estimation of augmented data.  

FLAC estimates can be obtained by the following steps: 

1) Define an indicator variable discriminating between 

original and pseudo data. 

2) Apply ML on the augmented data including the indicator.   

 

         unbiased pred. probabilities 
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FLIC 
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Firth’s Logistic regression with Intercept Correction: 

Modify the intercept in penalized estimates such that the 

average pred. probabilities becomes equal to the observed 

proportion of events. 

 

unbiased pred. probabilities 

effect estimates are the same as in Firth’s logistic 

regression 
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Simulation study 
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We want to investigate  

• individual predicted probabilities by FLIC and FLAC 

• effect estimates by FLAC 

• compare not only against ML and FL but also against 

• weakened Firth’s penalization, with 

𝐿 𝛽 ∗ = 𝐿 𝛽 det(𝑋𝑡𝑊𝑋)𝜏, 𝜏 < 1/2, 

• ridge regression, 

• penalization by log-F(1,1) priors, 

• penalization by Cauchy priors  

with scale parameter=2.5. 

 

 

•  (WF) 

 

•  (RR) 

•  (LF) 

•  (CP) 
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Simulation study: the set-up 
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We simulated 1000 data sets for 45 scenarios with: 

• 500, 1000 or 1400 observations, 

• event rates of 1%, 2%, 5% or 10% 

• 10 covariables (6 cat., 4 cont.), see Binder et al., 2011 

• none, moderate and strong effects 

Main evaluation criteria: 

Bias and RMSE of  

• pred. prob. and  

• effect estimates 
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Pred. probabilities by true linear predictor 
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meth. (RMSE x 10000)  

(sample size=500, prop. of events= 5%, small effect size)  
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Pred. probabilities by true linear predictor 
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meth. (RMSE x 10000)  

(sample size=500, prop. of events= 5%, small effect size)  
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Pred. probabilities by true linear predictor 
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meth. (RMSE x 10000)  

(sample size=500, prop. of events= 5%, small effect size)  
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Pred. probabilities by true linear predictor 
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meth. (RMSE x 10000)  

(sample size=500, prop. of events= 5%, small effect size)  
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Pred. probabilities by true linear predictor 
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meth. (RMSE x 10000)  

(sample size=500, prop. of events= 5%, small effect size)  
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Pred. probabilities by true linear predictor 
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meth. (RMSE x 10000)  

(sample size=500, prop. of events= 5%, small effect size)  
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Pred. probabilities by true linear predictor 
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meth. (RMSE x 10000)  

(sample size=500, prop. of events= 5%, small effect size)  
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Pred. probabilities by true linear predictor 

18 

meth. (RMSE x 10000)  

(sample size=500, prop. of events= 5%, small effect size)  
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Pred. probabilities by true linear predictor 
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meth. (RMSE x 10000)  

(sample size=500, prop. of events= 5%, small effect size)  
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Coefficients  
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Absolute bias and RMSE of standardized coefficients, 

averaged over all 10 covariables excluding the intercept: 
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Coefficients 

21 

Similar patterns can be observed across all 45 scenarios: 
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Conclusions  
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• For rare events, FL-predictions are severely biased  

(relative bias of up to 20% in our simulations). 

• Both, FLIC and FLAC improved on predictions by FL, with 

identical effect estimates or effect estimates of lower RMSE. 

• RR outperformed all other methods with respect to RMSE of 

coefficients and predictions, but introduces bias towards 0. 

Confidence intervals? 

 

Based on our simulations, if one is interested in effect 

estimates and predictions, we recommend to use 

• RR (whenever confidence intervals are not needed) 

• FLAC as a compromise between optimization of bias and 

RMSE.  
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