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An example
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e Simple 2 x 2 table:

* Suppose we are interested in the log odds ratio relating X to Y:

= log Z; = 2.6

Nni11/M1o
Ng1 /Moo

* f1 =log——
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* The likelihood for the example: timeou
* L(Blx,y) = o
n(X =1)" S
(1-n(x=1)"
(X = 0)"o1 z 5
(I-m(X =0))"° 2 °
* with 0
X =x) = S -
1/[1 + exp(—Bo — B1x)]
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Jeffreys prior: p(B) = |I(B)|/?

I(B)jr = —0%log L(B) /0B;0Px

0.0015
|

density
0.0010
|

Weakly informative prior
Automatic solution
Nice properties

0.0005
I

Chen et al JASA 2008,

timeou

0.0000
1

Firth Biometrika 1993,
Heinze and Schemper StatMed 2002
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* The posterior: e
p(Blx,y) = 0
p(B)L(Blx,y) 3 ]
* As expected,
the posterior is betweenthe . ¢
prior and likelihood ) S
% - [ [ [ [
-10 -5 0 10
beta
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Using priors in practice
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* General prior Derive posterior by simulation (MCMC)
* Ridge regression Prior can be expressed as likelihood penalty
Firth’s method/Jeffreys
* Conjugate prior Such that posterior has same algebraic form
as prior,

can be expressed as pseudo-observations (,,prior
data“ or data augmentation prior) or as a penalty

In special cases Jeffreys prior reduces to data augmentation

Firth Biometrika 1993; Jeffreys JASA 1946
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An example

 Augmented 2 x 2 table:

 x0 x|
7.5 1.5 9
25 4.5 7

* Maximization of the likelihood of augmented table is now equivalent to finding
the posterior mode with original data and Jeffreys prior
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Example of Greenland 2010

+ 2x2 table o xe0 x|
315 5 320
31 1 32 <— Rare outcome

36 6 352

Rare exposure
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Likelihood, prior, posterior
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Bayesian non-collapsibility:
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* Prior and likelihood modes do not ,collapse’: posterior mode exceeds both

* The posterior mode is more extreme than the ML estimate (likelihood mode)

0.0020
|

* How can that happen???

0.0015

likelihood

0.0010
|

0.0005
|

0.0000
|
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An even more extreme example
from Greenland 2010

I T N
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e 2x2 table

* Here we immediately see that the odds ratio=1 (5; = 0)

e But the estimate from augmented data: odds ratio = 1.26
(try it out!)
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Reason for Bayesian non-collapsilibity & X
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We look at the association of X and Y

We could treat the source of data as a ,ghost factor’ G

G=0 for original table

G=1 for pseudo data this is also the basic idea of
Puhr et al‘s (2017) FLAC method

We ignore that the conditional association of X and Y given G
is different from the marginal association
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Simulating the example of Greenland

* We should distinguish BNC in a single data set from a systematic increase in bias
of a method (in simulations)

* (This is only of interest to frequentists)
e Simulation of the example:

* Fixed groups x=0 and x=1, P(Y=1|X) as observed in example
* True log OR=0.709
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Simulating the example of Greenland
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* True value: log OR =0.709

Bias 4 +18%
RMSE ;4 * 0.86
Bayesian non- 63.7%

collapsibility 34

* Separation causes 3; to be undefined (—o0) in 31.7% of the cases (Mansournia et al AJE 2017)
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Simulating the example of Greenland

* To overcome Bayesian non-collapsibility,
Greenland and Mansournia (2015)
have proposed not to impose a prior on the intercept

* They suggest a log-F(1,1) prior for all other regression coefficients

 The method can be used with conventional frequentist software
because it uses a data-augmentation prior (which can be imposed by adding
pseudo-data and replacing the intercept with the source indicator G)
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Simulating the example of Greenland
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e Re-running the simulation with the log-F(1,1) method yields:

Bias 4 +18%
RMSE ;4 * 0.86
Bayesian non- 63.7% 0%

collapsibility 34

* Separation causes ; be undefined (—o0) in 31.7% of the cases
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Simulating the example of Greenland
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e Re-running the simulation with the log-F(1,1) method yields:

Bias [ +18% -52%
RMSE ;4 * 0.86 1.05
Bayesian non- 63.7% 0%

collapsibility 34

* Separation causes ; be undefined (—o0) in 31.7% of the cases
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Other, more subtle occurrences
of Bayesian non-collapsibility

* Ridge regression: normal prior around O
 usually implies bias towards zero,

* But:

* With correlated predictors with different effect sizes,
for some predictors the bias can be away from zero
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Simulation of bivariable log reg models
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* X1,X5,~Bin(0.5) with correlationr = 0.8,n = 50
 f; = 1.5, 5, = 0.1, ridge parameter A was optimized by cross-validation

Parameter True Ridge Log- Jeffreys-
value (Aopt) F(1,1) Firth

Bias [ +40% (+9%*) -26% -2.5% +1.2%
RMSE B, 3.04 (1.02*) 1.01 0.73 0.79
Bias [, 0.1 -451% (+16%*) +48% +77% +16%
RMSE £, 2.95 (0.81%) 0.73 0.68 0.76
Bayesian non- 25% 28% 23%

collapsibility 8,

*excluding 2.7% separated samples
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Confidence intervals
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Appropriate coverage of Wald (-/+ 1.96SE) intervals?
Needs unbiased estimators!

Penalized profile-likelihood (PPL) intervals are advisable instead:
* They do not depend on the point estimate

* They provide at least good coverage averaged over the prior that produced the
penalty. Gustafson and Greenland, 2009

Penalty can be expressed as prior which does not depend on observed Y for:
* log F method
o Jeffreys/Firth in saturated models

The prior depends on Y (directly or through a tuning parameter):
* Jeffreys/Firth in non-saturated models: good coverage (by simulation)
* Ridge: coverage levels violated Puhr et al, 2017
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Conclusion

Bayesian:
* Bayesian non-collapsibility is usually unintended

G

timeout.com

* Can be avoided in univariable models,
but no general rule to avoid it in multivariable models

Frequentist:
* Frequentist looks at repeated-sampling properties (bias, RMSE)
* Likelihood penalization can often decrease RMSE (even with BNC)

* Likelihood penalization # guaranteed shrinkage
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