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An example

• Simple 2 x 2 table:

• Suppose we are interested in the log odds ratio relating X to Y:

• 𝛽1 = log
𝑛11/𝑛10

𝑛01/𝑛00
= log

4/1

2/7
= 2.6

X=0 X=1

Y=0 7 1 8

Y=1 2 4 6

9 5 14
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• The likelihood for the example:

• 𝐿 𝛽|𝑥, 𝑦 =
𝜋 𝑋 = 1

𝑛11

1 − 𝜋 𝑋 = 1
𝑛10

𝜋 𝑋 = 0 𝑛01

(1 − 𝜋 𝑋 = 0 )𝑛00

• with
𝜋 𝑋 = 𝑥 =
1/[1 + exp −𝛽0 − 𝛽1𝑥 ]
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Jeffreys prior: 𝑝 𝛽 = 𝐼 𝛽 1/2

𝐼 𝛽 𝑗𝑘 = −𝜕2 log 𝐿 𝛽 /𝜕𝛽𝑗𝜕𝛽𝑘

Weakly informative prior
Automatic solution
Nice properties

Chen et al JASA 2008, 
Firth Biometrika 1993, 
Heinze and Schemper StatMed 2002
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• The posterior:
𝑝 𝛽 𝑥, 𝑦 =
𝑝 𝛽 𝐿(𝛽|𝑥, 𝑦)

• As expected, 
the posterior is between the 
prior and likelihood
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Using priors in practice

• General prior Derive posterior by simulation (MCMC)

• Ridge regression Prior can be expressed as likelihood penalty
Firth‘s method/Jeffreys

• Conjugate prior Such that posterior has same algebraic form 
as prior,
can be expressed as pseudo-observations („prior 
data“ or data augmentation prior) or as a penalty

• In special cases Jeffreys prior reduces to data augmentation

Firth Biometrika 1993; Jeffreys JASA 1946
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An example

• Augmented 2 x 2 table:

• Maximization of the likelihood of augmented table is now equivalent to finding
the posterior mode with original data and Jeffreys prior

X=0 X=1

Y=0 7.5 1.5 9

Y=1 2.5 4.5 7

10 6 16
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Example of Greenland 2010

• 2x2 table X=0 X=1

Y=0 315 5 320

Y=1 31 1 32

346 6 352
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Rare exposure

Rare outcome 
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Likelihood, prior, posterior
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Likelihood, prior, posterior
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Likelihood, prior, posterior
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Bayesian non-collapsibility:

• Prior and likelihood modes do not ‚collapse‘: posterior mode exceeds both

• The posterior mode is more extreme than the ML estimate (likelihood mode)

• How can that happen???
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An even more extreme example
from Greenland 2010
• 2x2 table

• Here we immediately see that the odds ratio = 1 (𝛽1 = 0)

• But the estimate from augmented data: odds ratio = 1.26 
(try it out!)

X=0 X=1

Y=0 25 5 30

Y=1 5 1 6

30 6 36
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Reason for Bayesian non-collapsilibity

• We look at the association of X and Y

• We could treat the source of data as a ‚ghost factor‘ G

• G=0 for original table

• G=1 for pseudo data this is also the basic idea of
Puhr et al‘s (2017) FLAC method

• We ignore that the conditional association of X and Y given G 
is different from the marginal association
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Simulating the example of Greenland

• We should distinguish BNC in a single data set from a systematic increase in bias
of a method (in simulations)

• (This is only of interest to frequentists)

• Simulation of the example:

• Fixed groups x=0 and x=1, P(Y=1|X) as observed in example

• True log OR=0.709

X=0 X=1

Y=0 315 5 320

Y=1 31 1 32

346 6 352
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Simulating the example of Greenland

• True value: log OR = 0.709
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Parameter ML Jeffreys-Firth

Bias 𝛽1 * +18%

RMSE 𝛽1 * 0.86

Bayesian non-
collapsibility 𝜷𝟏

63.7%

* Separation causes 𝛽1 to be undefined (−∞) in 31.7% of the cases (Mansournia et al AJE 2017)

timeout.com



Simulating the example of Greenland

• To overcome Bayesian non-collapsibility, 
Greenland and Mansournia (2015) 
have proposed not to impose a prior on the intercept

• They suggest a log-F(1,1) prior for all other regression coefficients

• The method can be used with conventional frequentist software
because it uses a data-augmentation prior (which can be imposed by adding 
pseudo-data and replacing the intercept with the source indicator G)

Greenland and Mansournia, StatMed 2015CEN-ISBS Vienna 2017 Georg Heinze, Angelika Geroldinger and Sander Greenland 17
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Simulating the example of Greenland

• Re-running the simulation with the log-F(1,1) method yields:
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Parameter ML Jeffreys-Firth logF(1,1)

Bias 𝛽1 * +18%

RMSE 𝛽1 * 0.86

Bayesian non-
collapsibility 𝜷𝟏

63.7% 0%

* Separation causes 𝛽1 be undefined (−∞) in 31.7% of the cases
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Simulating the example of Greenland

• Re-running the simulation with the log-F(1,1) method yields:
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Parameter ML Jeffreys-Firth logF(1,1)

Bias 𝛽1 * +18% -52%

RMSE 𝛽1 * 0.86 1.05

Bayesian non-
collapsibility 𝜷𝟏

63.7% 0%

* Separation causes 𝛽1 be undefined (−∞) in 31.7% of the cases
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Other, more subtle occurrences
of Bayesian non-collapsibility
• Ridge regression: normal prior around 0

• usually implies bias towards zero,

• But: 

• With correlated predictors with different effect sizes, 
for some predictors the bias can be away from zero
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Simulation of bivariable log reg models

• 𝑋1, 𝑋2~Bin(0.5) with correlation 𝑟 = 0.8, 𝑛 = 50

• 𝛽1 = 1.5, 𝛽2 = 0.1, ridge parameter 𝜆 was optimized by cross-validation 
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Parameter True 
value

ML Ridge 
(𝝀𝒐𝒑𝒕)

Log-
F(1,1)

Jeffreys-
Firth

Bias 𝛽1 1.5 +40% (+9%*) -26% -2.5% +1.2%

RMSE 𝛽1 3.04 (1.02*) 1.01 0.73 0.79

Bias 𝛽2 0.1 -451% (+16%*) +48% +77% +16%

RMSE 𝛽2 2.95 (0.81*) 0.73 0.68 0.76

Bayesian non-
collapsibility 𝜷𝟐

25% 28% 23%

*excluding 2.7% separated samples
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Confidence intervals

• Appropriate coverage of Wald (-/+ 1.96SE) intervals? 
Needs unbiased estimators!

• Penalized profile-likelihood (PPL) intervals are advisable instead:
• They do not depend on the point estimate
• They provide at least good coverage averaged over the prior that produced the

penalty. Gustafson and Greenland, 2009

• Penalty can be expressed as prior which does not depend on observed Y for:
• log F method
• Jeffreys/Firth in saturated models

• The prior depends on Y (directly or through a tuning parameter):
• Jeffreys/Firth in non-saturated models: good coverage (by simulation)
• Ridge: coverage levels violated Puhr et al, 2017
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Conclusion
Bayesian:

• Bayesian non-collapsibility is usually unintended 

• Can be avoided in univariable models, 
but no general rule to avoid it in multivariable models

Frequentist:

• Frequentist looks at repeated-sampling properties (bias, RMSE)

• Likelihood penalization can often decrease RMSE (even with BNC)

• Likelihood penalization ≠ guaranteed shrinkage
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