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The multiple faces of shrinkage

e |Introduction

« Post-estimation shrinkage methods:
Dunkler, Sauerbrei and Heinze, JStatSoft 2016

* From bias reduction to shrinkage and beyond
Puhr, Heinze, Nold, Lusa and Geroldinger, StatMed 2017
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Historical outline

« Gauss (early 1800s): Least Squares: unbiasedness as a paradigm

« James&Stein 1961.: Biased but better

« Hoerl&Kennard 1970: Ridge regression

« Efron 1975: The two statisticians applying for a job

« Copas 1983: Variable selection, bias and shrinkage estimators

« Van Houwelingen&leCessie 1990: Jackknife-type global shrinkage factor
« Tibshirani 1996: Lasso
« Greenland 2000: The sharp-shooter

« Van Houwelingen 2001:  Shrinkage and penalization review
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Purposes of shrinkage estimators

Sacrifice unbiasedness to reduce MSE of statistics (predictions, effect estimates)

Correct miscalibration

Reduce over-optimism

Variable selection
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Post-estimation shrinkage methods

Joint work with Michael Kammer, Daniela Dunkler, Willi Sauerbrei
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Shrinkage as a problem

e Predictions for new data are too extreme
e Consequence of regression to the mean (Copas 1997)
e Problematic: low level of information per variable or poor model fit
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Shrinkage as a problem

e Predictions for new data are too extreme
e Consequence of regression to the mean (Copas 1997)
e Problematic: low level of information per variable or poor model fit

Training data Validation data
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e Problematic: low level of information per variable or poor model fit
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Shrinkage as a solution

Anticipate and correct for shrinkage

Minimize overestimation by shrinkage of coefficients towards origin
= introduces (small) bias ...
= ...but often leads to reduction in mean squared error

Poor calibration Improved calibration

Prediction Prediction
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Post-estimation shrinkage methods

« Build model
- Estimate vector of regression coefficients # using maximum likelihood (ML)
« Use routine modeling strategies

« Select variables if needed and re-estimate

« Estimate global shrinkage factor b
. Leave-one-out resampling of g: =9
» Perform ML regression of outcomes on jackknifed linear predictors n; = %;; xijﬁj(_l)

« Shrinkage factor b = regression coefficient of this analysis (PESQ)
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Use of the shrinkage factors

« Shrinkage factor = 1 ... no shrinkage

« Shrinkage factor = 0 ... maximum shrinkage

« Shrinkage factor >0.8 ... OK, application of shrinkage factor could improve predictions
« Shrinkage factor 0.5<0.8 ... Modeling OK?

« Shrinkage factor 0<0.5 ... bad fit, unnecessary information in the model

« Once estimated, the shrinkage factor is then used to multiply all regression
coefficients:

j;new — IB"O n b(xlnewﬁ)

(Analogously for logistic or Cox regression)
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Sauerbrei’s (1999) ,parameterwise shrinkage factors’

« Leave-one-out resampling of g: f(=0
« Perform ML regression of outcomes on
jackknifed partial linear predictors n;; = x;;3; "

 Regression coefficients b; are used as parameterwise shrinkage factors (PESp)

« Recommended for models obtained by stepwise variable selection
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Dunkler's (2016) extension of parameterwise shrinkage

Dunkler et al (2016) investigated the parameterwise shrinkage factors b;

Provide a rough standard error estimate of the shrinkage factor
« The closer to 1, the lower the standard error

Joint shrinkage factor: hybrid between global and parameterwise shrinkage,

« combine shrinkage factor estimation for groups of semantically related variables,
or groups of regression coefficients which are uninterpretable alone

- Given G such groups, compute n;, = Zje]gxij,éj(_l)s forg=1,..,G

« Usen;, in second step and estimate SF's b;,g =1,...,G

DFBETA method: considerable computational gain by approximating
LD ~ B — DFBETA,;
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Example: deep vein thrombosis study

coef exp(coef) se(coef) z P
log2ddim 0.219 1.245 0.0854 2.56 0.0100
sex.male 0.491 1.634 0.1847 2.66 0.0079
loc.distal -0.922 0.398 0.3101 -2.97 0.0029
loc.proximal -0.205 0.815 0.1787 -1.15 0.2500

Likelihood ratio test=24.5 on 4 df, p=6.37e-05, n=929, number of events=147

Explanatory variable Jackknife DFBETA Relative difference 10 —
Global shrinkage 0.8076 0.8123 0.6%
Parameterwise shrinkage g 0
log2ddim 0.7321 0.7385 0.9% 8
sex.male 0.8351  0.8373 0.3% o 08
loc.distal 0.8394  0.8449 0.7% <
loc.proximal 0.1321 0.1470 11.2% g 07
S
Joint shrinkage © 06
log2ddim 0.7806 0.7864 0.7%
sex.male 0.8364 0.8386 0.3% 0.5
loc 0.8055 0.8111 0.7% '
Computing time 3.03 0.02 -99.3%

Estimation method

-4 DFBETA
—— Jackknife

200 400 600 800 1000

I
1200

T 1 T T T 1
1400 1600 1800 2000

Sample size (20% events)



How do shrinkage effects of different methods compare?

« We evaluated shrinkage effects of

« Post-estimation Shrinkage, parameterwise (PESp)
applied after AIC-guided backward elimination of effects

« Post-estimation Shrinkage, global (PESg)
applied to full model

« Ridge regression with optimized tuning parameter A

« Lasso regression with optimized tuning parameter A

« Realistic scenario resembling a typical observational study

« Survival outcome, censoring
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Simulations: realistic setup

e Correlation structure resembles medical N ST T

data (Binder et al. 2011) \“\&f;m-ﬂw-ws

e Binary, ordinal and continuous variables =

@ ®T

i e LS

e Baseline hazard follows Weibull sh '\\ , Sk
distribution @ (@

e Uniform censoring
e 1000 simulations

 Eventrate 50%

 Censoring 50%
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Selected scenario (EPV 10): Shrinkage of coefficients

Compare coefficient for method M with estimation by ML: shrinkage(sM) = M/ M

Type rmuit—l_ _ﬁs *
cl continuous 0.47 0.76
c2 continuous 0.40 0.59
c3 continuous 0.26 0.57
Ch continuous 0.38 0.53
c5 continuous 0 0.52
c6 continuous 0.42 0.52
b7 binary 0.13 0.48
b8 binary 0.15 0.32
b9 binary 0.38
b10  binary 0.10
cll  continuous 0.21
012  ordinal 0.20
013  ordinal 0.18
cl4  continuous 0.27
cl15  continuous 0
bl6  binary 0.18
bl7  binary 0

T multiple correlation, * standardized coefficient




Selected scenario (EPV 10): Shrinkage of coefficients

Al

Compare coefficient for method M with estimation by ML: shrinkage(3M) = 3M/3Mt

Type e Bs” Mean shrinkage

cl continuous 0.47 0.76
c2 continuous 0.40 0.59
c3 continuous 0.26 0.57
Ch continuous 0.38 0.53
c5 continuous 0 0.52
o3 continuous 0.42 0.52 Method
b7 binary 0.13 0.48 ML
b8 binary 0.15 0.32
b9 binary 0.38
b10  binary 0.10
c11  continuous 0.21
012 ordinal 0.20
013  ordinal 0.18
cl4  continuous 0.27
c15 continuous 0
bl6  binary 0.18
bl7  binary 0

T multiple correlation, * standardized coefficient




Selected scenario (EPV 10): Shrinkage of coefficients

Compare coefficient for method M with estimation by ML: shrinkage(sM) = M/ M

Type e Bs* Mean shrinkage

cl continuous  0.47 0.76 cl -

c2 continuous  0.40 0.59 c2 -

c3 continuous  0.26 0.57 c3 -

Ch continuous  0.38 0.53 c4 -

c5 continuous 0 0.52 c5 =

6  continuous  0.42 0.52 c6 = Method
b7 binary 0.13 0.48 b7 - — ML

b8 binary 0.15 0.32 b8 =

b9  binary 0.38 0 b9 — PESg
b10  Dbinary 0.10 0 b10 =

c1l1  continuous  0.21 0 c11 -

012  ordinal 0.20 0 012 -

013  ordinal 0.18 0 013 -

cl4  continuous  0.27 0 c14 -

c15  continuous O 0 c15 =

bl16  binary 0.18 0 b16 =

bl7  binary 0 0 b17 =

T multiple correlation, * standardized coefficient I I I I ! 13
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Selected scenario (EPV 10): Shrinkage of coefficients

Compare coefficient for method M with estimation by ML: shrinkage(3M) = 5M/3M

Type T Be Mean shrinkage
cl continuous 0.47 0.76
c2 continuous 0.40 0.59
c3 continuous 0.26 0.57
Ch continuous 0.38 0.53
c5 continuous 0 0.52
o3) continuous 0.42 0.52 Method
b7 binary 0.13 0.48 ML
b8 binary 0.15 0.32
b9  binary 0.38 PESg
b10  binary 0.10 —= PESp
cll  continuous 0.21
012  ordinal 0.20 —&— Ridge
013  ordinal 0.18
cl4  continuous 0.27
cl15  continuous 0
bl6  binary 0.18
bl7  binary 0
T multiple correlation, * standardized coefficient

-8— |asso




Selected scenario (EPV 10): Bias and RMSE of coefficients

bias(A") = 8, — A

Mean bias

Method

—A— ML
= PESg

b10 =

c11 - - - PESp

012 - ,_ —e— Ridge
013 -
14 - -8 Lasso
c15 -
b16 -
b17 -

| 1
-0.10 -0.05




Selected scenario: Shrinkage correction over EPV

Shrinkage measured in terms of calibration of linear predictor: h(t) = ho(t) exp(bX/3)
Anticipated shrinkage: 1/bi.;,

Mean anticipation




Selected scenario: Shrinkage correction over EPV

Shrinkage measured in terms of calibration of linear predictor: h(t) = ho(t) exp(bXj3)
Anticipated shrinkage: 1/bih;, Achieved calibration: b

validation

Mean anticipation Mean calibration

too pessimistic

Method
—— ML
PESg
-~ PESp
—o— Ridge

too optimistic —— Lasso




Conclusions: performance

e Penalized methods anticipate more shrinkage than parameterwise shrinkage

e Penalized methods tend to be too pessimistic, post-estimation methods too
optimistic

e Penalized methods more “stable” even at very low EPV

e Backward selection usually leads to smaller models, which are often
preferred by practicioners
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From bias reduction to shrinkage
and beyond

Joint work with Rainer Puhr, Angelika Geroldinger, Sander Greenland




Setting the scene

Logistic regression
(with fixed set of covariates,
rare events/critical events per variable ratio)

ML: small sample bias ()

Reduce bias: Firth correction =) Bissed predictions (%)

$ X 4
MSE reduction (B)! Correctin‘g bias in 7T
FLAC (Puhr 2017)
Bayesian methods with .

weakly informative priors == Fyrther MSE reduction (8 and 7)!
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Firth’s penalization for logistic regression

In exponential family models with canonical parametrization the Firth-type
penalized likelihood is given by

L*(B) = L(B) det(1(B)Y?,

where I(B) is the Fisher information matrix and L(B) is the likelihood.

Firth-type penalization
« removes the first-order bias of the ML-estimates of 3,
* is bias-preventive rather than corrective,

 is available in Software packages such as SAS, R, Stata...
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Firth’s penalization for logistic regression

In logistic regression, the penalized likelihood is given by
L*(B) = L(B) det(XtWX)1/2, with

W = diag(expit(X;B)(1 — expit(X;B)))
= diag(m;(1 —m;)) .

« Firth-type estimates always exist.

W is maximised at m; = % i.e. at B =0, thus
Shl‘ink

L .
« predictions are usually pulled towards =)

*”/””’/””’/’,,,,,,r age/
e coefficients towards zero.
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Firth’s penalization for logistic regression

« Separation of outcome classes by covariate values (Figs. from Mansournia, 2017)

3 —| Number of iteration "
1 ]
™~
=} | / [®] (0]
g 5 1 (o] -
= / < -
2 3 .
a /| = o
9 | A —
@ [ 0]
5 Y _ 10 / = (0]
g & f “Jl = 2
o [ = -
o [] /‘ o
C\! - / “‘ / hal
o piaf] w0
5 ‘,,‘ \T —
A [0) | | | | | |
= ¢ ee200 0600 6026 -~ A
e T T T T T T -10 -5 0 5 10 15
-4 -2 0 2 4 6

log ET-1 serum expression

« Firth's bias reduction method was proposed as solution to the problem of
separation in logistic regression (Heinze and Schemper, 2002

« Penalized likelihood has a unique mode

« |t prevents infinite coefficients to occur

OF VIENNA CeMSIIS-Section for Clinical Biometrics
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Firth’s penalization for logistic regression

Bias reduction also leads to reduction in MSE:

« Rainey, 2017: Simulation study of LogReg for political science
,Firth‘s methods dominates ML in bias and MSE'

However, the predictions get biased...

« Elgmati et al, 2015

... and anti-shrinkage could occasionally arise:

 Greenland and Mansournia, 2015

CeMSIIS-Section for Clinical Biometrics
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Firth’s Logistic regression

For logistic regression with one binary regressor®,
Firth’s bias correction amounts to adding 1/2 to each cell:

original augmented

[ A B ey A | B
44 4 Firth-type > [ 445 45
. penalization

v=1 [ B 15 15

event rate = % = 0.04 event rate = 5%««0.058

ORBVSA —_ 11 ORBVSA — 9.89
av. pred. prob. = 0.054

* Generally: for saturated models
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Example of Greenland 2010

original

Y=0 315

31 1 32
- 352

event rate = 32 _ 0.091
352

MEDICAL UNIVERSITY

augmented
--IE--
Y=0 315.5 321
Y=1 31.5 1.5 33

B 3465 6.5 354

event rate= — >3 = (0.093

354

Greenland, AmStat 2010

Georg Heinze, Angelika Geroldinger, Sander Greenland
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Greenland example: likelihood, prior, posterior
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Bayesian non-collapsibility:
anti-shrinkage from penalization

* Prior and likelihood modes do not ,collapse’:
posterior mode exceeds both

« The ,shrunken’ estimate

Is larger than ML estimate

likelihood

« How can that happen???

0.0000 0.0005 0.0010 0.0015 0.0020
|
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An even more extreme example
from Greenland 2010

. 2x2 table | X=0 x=1
25 30

:
5 1 6

 Here we immediately see that the odds ratio = 1 (; = 0)

« But the estimate from augmented data: odds ratio = 1.26

(try it out!) Greenland, AmStat 2010
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Simulating the example of Greenland

« We should distinguish BNC in a single data set from a systematic increase
in bias of a method (in simulations)

--
VeVl 315 320
31 1 32

Bl 6 6 352

« Simulation of the example:
« Fixed groups x=0 and x=1, P(Y=1|X) as observed in example

« True log OR=0.709
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Simulating the example of Greenland

* True value: log OR = 0.709

Parameter Jeffreys-
Firth

Bias f; +18%
RMSE g, * 0.86
Bayesiah non- 63.7%

collapsibility g,

* Separation causes p; to be undefined (—) in 31.7% of the cases
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Simulating the example of Greenland

 To overcome Bayesian non-collapsibility,
Greenland and Mansournia (2015)
proposed not to impose a prior on the intercept

« They suggest a log-F(1,1) prior for all other regression coefficients

« The method can be used with conventional frequentist software
because it uses a data-augmentation prior

Greenland and Mansournia, StatMed 2015
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logF(1,1) prior (Greenland and Mansournia, 2015)
)

Penalizing by log-F(1,1) prior gives L(B)* = L(B) - []

2
1+ePi’

This amounts to the following modification of the data set:

X
-
X
N
X
-
X
N

J

_ each assigned a weight of 1

*******~<

== e e
* ¥ K X X X ¥

X X X X X ¥ ¥

A

— each assigned a weight of 12

QOO0 RFRPRRPRRPREFLPRERLR
OO R I ¥ ¥ % % % x %
= —_O O ¥ ¥ ¥ X %k X ¥
RO RO ¥ ¥ % ¥ %X % ¥ \&

—_—

* No shrinkage for the intercept, no rescaling of the variables
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Simulating the example of Greenland

« Re-running the simulation with the log-F(1,1) method yields:

Parameter Jeffreys- logF(1,1)
Firth

Bias f; +18%
RMSE g, * 0.86
Bayesiah non- 63.7% 0%

collapsibility g,

* Separation causes B, be undefined (—) in 31.7% of the cases
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Simulating the example of Greenland

« Re-running the simulation with the log-F(1,1) method yields:

Parameter Jeffreys- logF(1,1)
Firth

Bias f; +18% -52%
RMSE g, * 0.86 1.05
Bayesiah non- 63.7% 0%

collapsibility g,

* Separation causes B, be undefined (—) in 31.7% of the cases
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Other, more subtle occurrences
of Bayesian non-collapsibility

Ridge regression: normal prior around O

usually implies bias towards zero,

e But:

With correlated predictors with different effect sizes,
for some predictors the bias can be away from zero
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Simulation of bivariable log reg models

« X;,X,~Bin(0.5) with correlation r = 0.8,n = 50

 B; = 1.5, B, = 0.1, ridge parameter A optimized by cross-validation

Parameter Ridge (CV 1) Log- Jeffreys-
F(1,1) Firth

Bias f; +40% (+9%*) -26% -2.5% +1.2%
RMSE g, 3.04 (1.02%) 1.01 0.73 0.79
Bias B, -451% (+16%*) +48% +77% +16%
RMSE B, 2.95 (0.81%) 0.73 0.68 0.76
Bayesian non- 25% 28% 23%

collapsibility g,
*excluding 2.7% separated samples
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Anti-shrinkage from penalization?

Bayesian non-collapsibility/anti-shrinkage

e can be avoided in univariable models,
but no general rule to avoid it in multivariable models

« Likelihood penalization can often decrease RMSE
(even with occasional anti-shrinkage)

« Likelihood penalization # guaranteed shrinkage
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Reason for anti-shrinkage

We look at the association of X and Y

We could treat the source of data as a ,ghost factor® G

G=0 for original table

G=1 for pseudo data

We ignore that the conditional association of X and Y is confounded by G
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Example of Greenland 2010 revisited

original augmented

Y=0 315 Y=0 315.5 321

31 1 32 v=1 (NN 33
- EZG 352 - A 352

To overcome both the overestimation and anti-shrinkage problems:

« We propose to adjust for the confounding by including the ,ghost factor’ G
in a logistic regression model

MEDICAL UNIVERSITY Georg Heinze, Angelika Geroldinger, Sander Greenland
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FLAC: Firth‘s Logistic regression with Added Covariate

Split the augmented data into the original and pseudo data:

original pseudo
augmented G=1 <+—— Ghost factor

LA B_ I-ﬂ LA LB
] 3155 55 > 315 5 + [ o5 o5
31.5 1.5 31 1 0.5 0.5

ORBVSA =2-O3

Define Firth type Logistic regression with Additional
Covariate as an analysis including the ghost factor as
added covariate:

ORBVSA :184
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FLAC: Firth‘s Logistic regression with Added Covariate

Beyond 2x2 tables:

Firth-type penalization can be obtained by solving modified score equations:

N

1
Z(yl — T[l')xir + hi <§ — Tl,'l') Xir = 0; r = 0, o, P
=1

1
where the h;’s are the diagonal elements of the hat matrix H = Wz2X(X'WX)~1xw/2

They are equivalent to:

N N )
zi(Yl l)xl’l"-l_z_(yl l)+z—(1 yl )=O
i=1

@ MEDICAL UNIVERSITY Georg Heinze - The multiple faces of shrinkage
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FLAC: Firth‘s Logistic regression with Added Covariate

« A closer inspection yields:

N N h N h
2(%’ — ;)X + z ?l (i — m)xir + z ?l 1-y;—m)x; =0
=1 =1 =1

\ J \ J \ J
[ | [

The original data

Original data, Data with reversed outcome,
weighted by h;/2  weighted by h;/2

\ }
|

Pseudo data
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FLAC: Firth‘s Logistic regression with Added Covariate

« A closer inspection yields:

N N h N h
2(%’ — ;)X + z ?l (i — m)xir + z ?l 1-y;—m)x; =0
=1 =1 =1

\ J \ J \ J
[ | [

The original data

Original data, data with reversed outcome,
weighted by h;/2  weighted by h;/2

\ }
|

Pseudo data

Ghost factor: G=0 G=1
(,Added covariate’)
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FLAC: Firth‘s Logistic regression with Added Covariate

FLAC estimates can be obtained by the following steps:

1) Define an indicator variable discriminating between original and

pseudo data.

2) Apply ML on the augmented data including the indicator.

J unbiased pred. probabilities

Georg Heinze - The multiple faces of shrinkage
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FLIC

Firth type Logistic regression with Intercept Correction:

1. Fit a Firth logistic regression model

2. Modify the intercept in Firth-type estimates such that the average pred. prob.
becomes equal to the observed proportion of events.

J unbiased pred. probabilities
effect estimates are the same as in Firth type logistic regression

Georg Heinze - The multiple faces of shrinkage
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Simulation study: the set-up

We investigated the performance of FLIC and FLAC,
simulating 1000 data sets for 45 scenarios with:

« 500, 1000 or 1400 observations, _0.

« event rates of 1%, 2%, 5% or 10% © (6] @ 0.3

« 10 covariables (6 cat., 4 cont.), O% \ '0% . R
see Binder et al., 2011 0.3 b 0-3{

* none, moderate and strong effects / /
of positive and mixed signs M@

Main evaluation criteria:

bias and RMSE of predictions and effect estimates
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Other methods for accurate prediction

In our simulation study, we compared FLIC and FLAC to the following methods:

« weakened Firth-type penalization (Elgmati 2015),

with L(B)* = L(B) det(X*WX)?, T = 0.1, WF
« ridge regression, RR
« penalization by log-F(1,1) priors, LF
« penalization by Cauchy priors with scale parameter=2.5. CP
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Cauchy priors (CP)

Cauchy priors (scale=2.5) have heavier tails than log-F(1,1)-priors:

—H - log-F(1,1)
— Cauchy(0,2.5)

prior density
0.10
|

0.00

log odds ratio 3

We follow Gelman 2008:
« all variables are centered,
« binary variables are coded to have a range of 1,
« all other variables are scaled to have standard deviation 0.5,
« the intercept is penalized by Cauchy(0,10).

This is implemented in the function bayesg1m in the R-package arm.
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Simulation results

- Bias of 3: clear winner is Firth method
FLAC, logF, CP: slight bias towards 0

. RMSE of §:
equal effect sizes: ridge the winner
unequal effect sizes: very good performance of FLAC and CP

closely followed by logF(1,1)

« Calibration: often FLAC the winner; considerable instability of ridge

« Bias and RMSE of 7: see following slides
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Predictions: bias RMSE
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Predictions: bias RMSE
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Predictions: bias RMSE
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Predictions: bias RMSE
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Predictions: bias RMSE
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Predictions: bias RMSE
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Predictions: bias RMSE
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Predictions: bias RMSE
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Comparison

* No tuning parameter « CP: in-built standardization,

: : . no tuning parameter
« Transformation-invariant

: . « logF(m,m): choose m by ’95% prior region’ for
« Often best MSE, calibration gk ) _ Y °P g
parameter of interest

m=1 for wide prior, m=2 less vague
- Standardization is standard - (in principle, m could be tuned as in ridge)

« Tuning parameter « logF: easily implemented

- no confidence intervals o _
« CP and logF are not transformation-invariant

« Not transformation-invariant

« Performance decreases
if effects are very different
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Confidence intervals

It is important to note that:

« With penalized (=shrinkage) methods one cannot achieve nominal coverage over
all possible parameter values

« But one can achieve nominal coverage averaging over the implicit prior

* Prior - penalty correspondence can be a-priori established
if there is no tuning parameter

« Important to use profile penalized likelihood method

- Wald method (8 + 1.96 SE) depends on unbiasedness of estimate
Gustafson&Greenland, StatScience 2009
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Conclusion

« Variable selection should be « We recommend FLAC for:
accompanied by shrinkage factor
estimation

« Good performance

_ « |Invariance to transformations or
« BW-PESp unless EPV ratio very low coding
« PESp can also reveal modeling

« Cannot be ‘outsmarted’ by creative
problems

coding
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